Form Approved
PORT DOCUMENTATION PAG
RE ocu E OMB No. 07040188
Puhhc mpamng burden fov thls llection of inf ion is esti d to average 1 hour per responss, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and

Send g this burdsn estimate or any other aspect of this collection of information, including suggestions for reducing this burdsn, to Washington Headquarters Services, Directorate for
Infmmanon Dpsmmns and Rapom, 1215 Jefferson Davis Hmhway Suits 1204, Arlington, VA 22202-4302, and to the Office of Managsment and Budget, Papsrwork Reduction Project {0704-0188), Washingtan, DC 20503.

1. AGENCY USE ONLY (Leave blank] 7. REPORT DATE 3. REPORT TYPE AND DATES COVERED

‘ 2 Dec 97
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
Attributes Of Quality Scenarios / Scenario sets Used In Software Requirements
Elicitation

6. AUTHOR(S)

Kimberly Ann Braun
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Colorado Springs REPORT NUMBER
97-145
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
THE DEPARTMENT OF THE AIR FORCE AGENCY REPORT NUMBER
AFIT/CIA, BLDG 125
2950 P STREET
WPAFB OH 45433
11. SUPPLEMENTARY NOTES
12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
DISTRIBUTION STATEMENT B
Approved for publbic m&@mv
Diewibutinn Unlimited
13. ABSTRACT Maximum 200 words)
DTIC QUALITY INSPECTED 2
14. SUBJECT TERMS 15. NUMBER OF PAGES
147
16. PRICE CODE
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

OF REPORT OF THIS PAGE OF ABSTRACT

Standard Form 298 gRev 7-69) (EG)
Prescribed by ANSI
Dasigned using Perfuvrn Pro, WHSIDIOR, Oct 94

U 19971208 012

M.S., Computer Science 1997
Attributes Of Quality Scenarios / Scenario Sets Used In Software Requirements Elicitation
147 pages

University of Colorado at Colorado Springs

In order for a quality software product to be developed, quality must exist from the
beginning. One of the first stages in software development is requirements gathering. Scenarios
help bring together the stakeholders of the future system to discuss and agree upon the
requirements of the proposed system.

This thesis examines scenarios used in software requirements elicitation. Many different
definitions, formats, and ideas exist on scenarios, but no thorough work has been done on what
makes a good, quality scenario and scenario set. This thesis will define quality for a scenario and
scenario set.

Research into the current state of practice of scenarios will reveal any references authors
make with respect to quality attributes they want in their scenarios. Since the result of
requirements elicitation is the Software Requirements Specification (SRS), research into what
makes a quality SRS will inspire ideas for a quality scenario and scenario set. New, previously
unmentioned attributes, generated from fresh, new thinking on the subject will round out the
quality attribute list for scenarios and scenario sets that this thesis develops.

Each attribute will be defined, justified, and examples shown of what a scenario or
scenario set would be like if the attribute was missing and how the scenario or scenario set would
be improved if the attribute were included. Although this paper does not claim to prove the
resulting attribute list is sufficient for a quality scenario and scenario set, it will show the
necessity of each attribute. Showing how the software lifecycle or other software development

functions will be adversely affected if an attribute is missing will prove necessity.

ATTRIBUTES OF QUALITY SCENARIOS / SCENARIO SETS USED IN SOFTWARE
REQUIREMENTS ELICITATION
by
KIMBERLY ANN BRAUN
B.A., University of San Diego, 1993

M.S., Colorado Technical University, 1996

A thesis submitted to the Graduate Faculty of the
University of Colorédo at Colorado Springs
in partial fulfillment of the
requirements for the degree of
Master of Science
Department of Computer Science

1997

This thesis for the Master of Science degree by
Kimberly Ann Bréun
has been approved for the

Department of Computer Science

Dr. Alan Davis, Chair

1oL E gk

Df}lqaru ke Augusteljn

O Dr. Jugal Kalita

4

i

I\/M' i 1&g
I 1/

Date

iii

Braun, Kimberly Ann (M.S., Computer Science)
Attributes Of Quality Scenarios / Scenario Sets Used In Software Requirements Elicitation

Thesis directed by Professor Alan M. Davis

In order for a quality software product to be developed, quality must exist from the
beginning. One of the first stages in software development is requirements gathering,
Scenarios help bring together the stakeholders of the future system to discuss and agree upon
the requirements of the proposed system.

This thesis examines scenarios used in software requirements elicitation. Many
different definitions, formats, and ideas exist on scenarios, but no thorough work has been
done on what makes a good, quality scenario and scenario set. This thesis will define quality
for a scenario and scenario set.

Research into the current state of practice of scenarios will reveal any references
authors make with respect to quality attributes they want in their scenarios. Since the result
of requirements elicitation is the Software Requirements Specification (SRS), research into
what makes a quality SRS will inspire ideas for a quality scenario and scenario set. New,
previously unmentioned attributes, generated from fresh, new thinking on the subject will
round out the quality attribute list for scenarios and scenario sets that this thesis develops.

Each attribute will be defined, justified, and examples shown of what a scenario or
scenario set would be like if the attribute was missing and how the scenario or scenario set
would be improved if the attribute were included. Although this paper does not claim to
prove the resulting attribute list is sufficient for a quality scenario and scenario set, it will

prove the necessity of each attribute. Showing how the software lifecycle or other software

development functions will be adversely affected if an attribute is missing will prove

necessity.

v

CONTENTS

CHAPTER
L INTRODUCGTIONooooiiiiiiieeiteeie ettt ettt et 1
II. LITERATURE SEARCH RESULTS........ooiiiiiiiiieiieiit e 6
DEEINTEIONS ..ottt e ettt e e e e et r e e e e e et e e e e et ee s e s s s e e s e e e e e s naaeeaenes 7
Possible USes OFf SCENATIOSovviiiiiiiiiiie et e e 11
REQUITEIMENLS.oveeeiieeeieie it 11
DIESIZI ...ttt 12
TESEINE ...ttt 13
OtNET ISSUESeeeeeeeieeeee et eee et e et e ettt e ettt e et e e e e e e s e e e e e e e e e e e ib e e e e 14
State Of The Practice: Scenario Presentation Formats and Ranges Of Media.................. 16
| 0V (075 147:) FOUUU OO PO OPOR P PRPPUT R 17
FOTIMAL. ...ttt e ettt a e e 19
What Makes 2 GOOd SCENATIO?........ccuvviiiiiiieeiiie e 26
Attributes Of a Quality Software Requirements Specification (SRS) ... 30
III. APPROACH AND RESULTSooiiiiiiiiiieeie e 36
APPTOACK ..ot 36
RESUIES ..ottt ettt ettt 39
Definition 0f @ SCENATIO..........couiiiiiiiiiiie ettt 39

Goal of Using Scenarios for Requirements Elicitation ... 39

vi

The Requirements Funnel ... 40
How to Describe the Attributes....... ... 41

Attributes Common to a Quality SRS and Current Thinking of What Makes a Good

SCENATIOecviiiii ittt ettt 42
1. Complete SCENATIO.........cc.uiiiiiiiieitee ettt 48
2. Complete Scenario Set..............ccoooiiiiiiiiiiiiiiiiiiii i 49
3. COMCISEttt et 51
G DASCICLE ...ttt ettt et ettt et 53
5. Single Scenario CONSISLEINCYoocuiriiiiiiiiiiiieiiiiieie e 55
6. Scenario Set CONSISTENCYco.vriiiiiiiiiieiiieie ittt ..56
7. Timing Constraints Modeled.................ooeriiiiiiiiiiiii 58
8. Right Level of Abstraction / Detail................cocooiiiiiiiiniiii 60
9. Understandableoooiiiiiiiiii i 63

Quality Attributes of an SRS not Previously Mentioned for Scenarios, but do Apply to

SCENATIOScuviiiiiiiieie ettt et ettt ettt 65
10, AChIEVADIE..........ooeeieeiiii e 66
L1, APPIOPTIALE.oeiiiiieiiieinii ettt 67
12. Usable after SRS Written {testable / verifiable} ... 70
13. Named {Traceable}cooooiiiiiiiiiiiii e 71
T4, TTaCEA ..o 73

Current Quality Attributes of Scenarios not Common with Attributes of a Good SRS..75
15. Initial Conditions Described.............cccoooiiiiiiiiiiiiiiiii 77
16. Validatedoooviiiiiiiiiee e 79

17. Single Threaded...........cccoviiiiiiiiiiiii i 82

vii
Quality Scenario Attributes with N0 OTigins............c.cocoviiiiiiiiiii 86
18. Model both Normal and Exceptional Cases............c....ccccceeeviiiiiiiiiininin. 87
19. Simulate System Failures and Recoveries as Possible 90
20. Multiple Forms of Media Used as Needed.....................ccooooi 92
21. Boundaries Between System and Users Shown Clearly.................................. 93

Uniqueness and Necessity of Five Similar Attributes: (concise, discrete, single threaded,

appropriate, and right level of detail)........................c 95

An Example of a Quality Scenario...............ccooiiiiiiiiiiiiii 101
IV. VALIDATION AND CONCLUSION.......ooiiiiiiiiiitiiiiiieiitececee e 104
REQUITEIMEIES ..ottt ettt et e e e 108
Incomplete SRSo 108
INCOITECt SRS ..o 110
SRS Difficult to Readoooviiiiiiiiec e 111
Other Problems Contributing to a Bad SRS ... 112
Design and COAEooeiiiiiiiiieit et 113
Bad Design and Codeoooviiiiiiiiiiiiie e 114
Difficult to Create @ DeSINoooveiiiiiiiiieiiiiceeee e 115
Money and Time Wasted.............cccooiiiiiiiiii 116
Jacobson’s Object Use Cases cannot be usedccoooiiiiiiiii 116
Tt e 116
Don’t Know How to Test @ SCenarioc.cccooviiiiieriiiiiiiiiiiiiiiiiiiice e 117
Incorrectly Pass / Fail Test Cases..........cooeiiiiiiiiiiiiciiiiiiie e 118
Difficulties in Creating Test Cases............coiiireriieiiiiieiiiaiie i 119

Other Problems in TeStINGcooiiiiiiiiiie et 119

IMAINEENANCEoviiiiiiiiieieie ettt ettt ettt e ettt e e e e e et te e e e e e aneeeans 120
Correcting the Delivered Systemcco.coociiiiiiiii 122
IMANAGEIMENTocviiieniiieeiiee ettt ettt et e e et e e 124
Mismatch Between Estimated and Actual Cost / Schedule...................ooo 125
Configuration Management (CM)cccooiiiiiiiiiiiiiii e 127
Inability to put Scenarios under CM Control...............cccooiiiiiiiiiiii 127
CONCIUSIONooviiiiiieiiie ettt e 128

REFERENCE LIST ... e e 130

ix

TABLES
Table
1. Scenario DefINItIONScooviiiiiiieiii ettt 8
2. Scenario RePreSentations..............covivieriiiriiiniieie it e e 26
3. Attributes Of a Quality SRS 31
4. Current Thinking on Good Scenario Attributes and Attributes Of a Quality SRS......... 44

5. If Scenario / Scenario Set Attribute Missing - Resulting Impact on Software Lifecycle

FIGURES
Figure

1. Three Worlds of Quality, Software Requirements Specifications and Scenarios.......... 3
2. My Thesis: Quality Attributes Of Scenarios and Scenario Setscccoooini. 4
3. Interaction of Actors, Future System and Use Cases..................coooiiiiiiii, 10
4. Jacobson Notation For Combining Use Cases (Taken From Rumbaugh 1994) 10
5. Jacobson’s Use Case Model (Taken From Jacobson 1995) ..o, 11

6. Jacobson's Use Case Model for Design Showing Software Components that satisfy a
USE CaSE.....oo oottt ettt e e e e et st e e 12

7. Portion of Two-Dimensional Waterfall Model (Davis 1990) showing how Scenarios
And Requirements Affect Testing...............ccoocoiiiii 13
8. Screen 1.0 Welcome Screen For Proposed System............oocooviviioiiiiicciniiiiin, 14
9. Screen 1.2 Resulting from User Selecting ‘Wildlife’ from Welcome Screen............... 15
10. Screen 1.2.2 Resulting from User Selecting ‘Birds’ from Screen 1.2............................ 15
11. Diagram of the Monitor Patient Scenario (taken from Kramer and Keng 1988) 20
12. An example of the Basic Model View (taken from Leite et al. 1997) 21
13. An example of the Scenario Model View (taken from Leite et al. 1997) 22
14. Language Extended Lexicon Entry: Picture Cabin (taken from Leite et al. 1997)....... 23

15. Formal Model of Scenarios - Center for Software Systems Engineering At UCCS (Taken

From UCCS 1997)....cuiiiiiiiiiceeit e 23

16. Grammar for the Caller View of a Telephone System (taken from Hsia et al. 1994)......24

17. Attributes of @ GOOA SCENATIO.oeeeee e 29

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

xi

Thesis Sources: Current Thinking on Quality Attributes of Scenarios (Quadrants 1 and
3), Quality Attributes of an SRS (Quadrants 1 and 2) and New Thinking (Quadrant 4)
.. 38

The Requirements Funnel..................ocooiiiiiiiiii e, 40

Attributes Common to Current Thinking on Quality Scenarios And SRSs 47

SRS Attributes not Common with Current Thinking on Scenario Attributes 65

Current Scenario Attributes not Common with SRS Attributes.....................o 76

New Attributes: Not Found in Current Thinking on Quality in a Scenario Or Quality in
AN SR S e 87

Adapted Software Waterfall Lifecycle...............cocoooi 104

Design and Code Problems Caused by Problems in the SRS Resulting From Missing
Scenario / Scenario Set AHIIDULES.ooiiiiiiioiiiiiie e 114

Testing Problems Caused by Problems in the SRS Resulting from Missing Scenario /
Scenario Set AtIIDULESooiiiiiiiiii it e e 117

Source Of Problems in Maintenance Stemmed from Missing Scenario / Scenario Set
ATIDULES 121

Possible Causes for Mismatches in Estimated and Actual Cost / Schedule 125

CHAPTER 1

INTRODUCTION

Software consumers are concerned with software quality and want a product that will
meet their needs (Keller, Kahn and Panara 1990). Quality is an important, and yet elusive,
attribute of software. It is very difficult (if not impossible) to turn an existing software
program of poor quality into a program of good quality. Instead, quality needs to be
incorporated from the beginning steps of software development. One of the first phases or
steps in software development is the ‘requirements analysis’ phase.

Requirements analysis, as a phase of the software lifecycle, is composed of two main
parts: elicitation and specification. Requirements elicitation is the process of gathering
requirement information from the stakeholders of a proposed system. Requirements
specification is the process of translating the information gathered from elicitation to a
specification document from which designers of the system can work to design the system.

It is important to elicit and specify as many requirements as possible during the requirements
phase because the later in the lifecycle requirements are found to be missing or in error, the
more costly it will be to make the corrections (Boehm 1981).

Scenarios can be used as a tool in requirements elicitation. Scenarios are used to
show sample interactions with the proposed system. They help users of the future system
communicate their wants to developers and help developers communicate how they ‘see’ the
proposed system. Scenarios aid in eliciting requirements that were previously missing. They

also help refine and clarify ideas and help get users and developers ‘on the same page’.

Scenarios reduce knowledge errors, these are errors caused by not knowing what the true
requirements are (A. Davis, Overmyer et al., 1993).

A quality set of scenarios is one that will help elicit and refine/clarify as many
requirements as possible. The better the set of scenarios, the better the resulting requirements
specification will be, thereby starting down the road to a better quality software product. My
thesis will define the attributes of a quality scenario and scenario set.

My thesis will bring together the three worlds of: 1) quality, 2) software requirements
specifications (SRS) and 3) scenarios as shown in the Venn diagram in Figure 1. A portion
of the scenario world deals with what authors want in their scenarios (translated to quality
attributes of their scenarios) and overlaps with the quality world. A portion of the Software
Requirements Specification world deals with quality attributes of an SRS and overlaps with
the quality world. In addition, some of the attributes of a quality scenario and attributes of a

quality SRS are common.

Figure 1 Three Worlds of: Quality, Software Requirements Specifications and
Scenarios

()

Figure 2 shows how my thesis fits into these three worlds. My thesis covers quality

attributes of scenarios and scenario sets and is represented by the shaded region of Figure 2.
The shaded area includes quality attributes of scenarios not common to quality attributes of
an SRS (the intersection of scenario and quality worlds minus the SRS overlap). In addition,
the shaded area includes those attributes of a quality SRS common to attributes of scenarios
(the intersection of quality, scenarios and SRS worlds). My thesis will expand the shaded

region.

Figure 2 My Thesis: Quality Attributes of Scenarios and Scenario Sets

Scenarios

My Thesis:
Shaded region

My thesis will expand the shaded region by claiming there are some attributes of an
SRS not currently belonging to the intersection with scenarios that are also good for
scenarios (as shown by arrow #1 from the ‘SRS’ world to the intersection of quality,
scenarios and SRS worlds). In addition, I claim there are also attributes in the ‘quality’ world
not previously mentioned that pertain to scenarios (as shown by arrow #2 from the ‘quality’
world to the intersection of scenario and quality worlds). Some authors have discussed
quality attributes of their scenarios that they desire (interpreted as quality attributes of a
scenario). While most of these apply to all scenarios, I claim that some do not (as shown by
arrow #3 leaving the intersection of scenario and quality worlds to the non-intersecting

portion of the scenario world).

To support these claims I will list, define and justify a list of attributes that make up a
quality scenario and scenario set. The list of attributes will be created by 1) expanding upon
and adapting quality attributes previously mentioned by authors on scenarios and SRSs and
2) adding to the list of attributes new attributes not previously referenced in the realm of
SRSs or scenarios. In addition, I will discuss why some authors’ current beliefs on quality
scenarios are not applicable to all scenarios. I will prove that each attribute in my list is
necessary by showing how the software lifecycle and other software functions would be
adversely affected if any one of the attributes was missing. While I will prove necessity, I
am not claiming sufficiency. Even though countless hours have been spent pouring over the
attribute list and thinking of all possible situations and attributes, I cannot prove that there is
not one attribute lingering ‘out there’ that has not been included, yet would aid in making a
scenario or set of scenarios better (although I cannot think of any).

By accomplishing the above, I will be adding new information to the world of
scenarios for requirements elicitation. In total, I will define 21 attributes of a quality scenario
/ scenario set. Previously, no more than 5 scenario attributes have been mentioned at one

time (by Nardi in 1995).

CHAPTER 2

LITERATURE SEARCH RESULTS

Scenarios are not a well-specified technology. It is difficult to find two people with
the same definition of a scenario with respect to software systems. Not only is there a range
of definitions for scenarios, but the degree of informality/formality, forms of media, and the
range of uses of scenarios vary greatly. There is no consensus on the appropriate level of
detail for a scenario (Rosson and Carroll 1995).

The fact that thoughts and ideas vary greatly in the world of scenarios is fairly evident
by just looking at the titles of some articles written in the 1992 SIGCHI Bulletin:

e Will The Real Scenario Please Stand Up? (Campbell 1992),
e What’s in a Scenario? (Wright 1992),

e Multiple Uses of Scenarios (Young and Barnard 1992),

e Scenario? Guilty! (Kyng 1992)

With all the research and work into scenarios, there has yet to be created a thorough
list of attributes that a good quality scenario should possess and how to check that a scenario
contains those attributes. However, research has been done into what makes a quality
Software Requirements Specification (SRS) (the end product that elicitation scenarios help
produce). This chapter will not only look at work on scenarios, but will also look at the work

in describing and measuring quality in an SRS.

Definitions

As already mentioned, there is a great variety of definitions for scenarios in software
systems. Table 1 is a selection of different definitions for scenarios. The definitions differ in
how specific or constraining they are. Some definitions of a scenario are general or wide
open such as: ‘an evolving description of situations in the environment’ (Leite et al. 1997) or
‘a story that illustrates how a perceived system will satisfy a user’s needs’ (Holbrook 1990)
or ‘a flexible, informal medium for carrying on a high-level conversation between groups of
designers and users’ (Wexelblat 1987). Other definitions are more specific such as: ‘a path
in a scenario tree described by a grammar from which a conceptual machine is constructed’
(Hsia et al. 1994) or ‘a sequence of actions showing how a transition from one state to
another might occur’ (Anderson and Durney 1992). The more specific definitions seem to
dictate a methodology such as using state transitions or constructing scenario trees and

grammars while the more general definitions give very little guidance for a methodology.

Table 1 Scenario Definitions

A scenario is...... Source
simply a proposed specific use of the system... a scenario is a (Potts,
description of one or more end-to-end transactions involving the required Takahashi,
system and its environment Anton 1994)

an encapsulated (that is self-contained, portable) description of:
An individual user
Interacting with a specific set of computer facilities
To achieve a specific outcome
Under certain circumstances
Over a certain time interval (this is in contrast to simple static
collections of screens and menus; the scenario explicitly includes a time
dimension of what happens)

(Nielsen 1995)

a narrative that describes someone trying to do something in some
environment. As such it is a description of context, which contains
information about users, tasks and environment

(Karat 1995)

an informal narrative, collaboratively constructed by a team, that
describe human work processes; some of these work processes involve a
computer....we attempt to address, where appropriate, human goals and
motivations, design alternatives, and other questions that extend or deepen
our understanding of the problem...

(Muller et al.
1995)

a narrative format, as in text narrative or storyboard or video which
involves the inclusion of user content

(Nardi 1995)

a story that illustrates how a perceived system will satisfy a user’s

(Holbrook 1990)

needs

a path in a ‘scenario tree’ described by a grammar from which a (Hsia et al.
conceptual machine is constructed 1994)

a simulation of events a user would experience in performing the (Hooper and
tasks that constitute the operation of a system Hsia 1982)

an evolving description of situations in the environment (Leite et al.

1997)

a sequence of actions showing how a transition from one state to (Anderson and
another might occur Durney 1992)

a flexible, informal medium for carrying on a high-level (Wexelblat
conversation between groups of designers and users 1987)

a sequence of interactions between a solution system and its
environment which serves as a representative example of how some system
features work

(UCCS 1997)

On a similar note, a ‘use case’ is Source
a way to use the system while a scenario is an instance of a use case | (Jacobson 1995)
a description of the possible sequences of interactions among the (Rumbaugh
system and one or more actors in response to some stimulus by one of the 1994)

actors. It is not a single scenario, but rather a description of a set of
potential scenarios, each starting with some initial event from an actor to the
system and following the ensuing transaction to its logical conclusion

Use cases and scenarios may have slightly different means to reach the same end.
That is why use cases are briefly explained here along with other authors’ views of scenarios.

The boundary between scenarios and use cases is almost a blur depending on one’s
definition of a scenario. Table 1 shows two definitions of use cases. According to two
scholars, James Rumbaugh and Ivar Jacobson, a use case is a description of a set of potential
scenarios. Therefore, a scenario is a specific instance of a use case. Rumbaugh and
Jacobson are particularly interested in how use cases can lend themselves to object-oriented
modeling. For example, a use case is a description for a set of scenarios, in the same sense
that a class is a description for a set of objects (Rumbaugh 1994).

When working with use cases, an actor (i.e. system operator, database administrator,
separate computer, etc.) is defined as any outside entity that interacts with the system and
each actor uses the system in fundamentally different ways. Any person may have many
different actor roles (i.e. database administrator, user, maintainer, etc.) Each of these
different ways that an actor interacts with the system is a use case. Figure 3 illustrates this
relationship among actors, the system and use cases.

Use cases are written in natural language and can be combined to create other use
cases (Rumbaugh 1994). In addition to natural language, diagrams can also be used to 1)

show the relation among use cases (which use cases ‘uses’ or ‘extends’ other use cases) as

10

shown in Figure 4, and 2) to show the interaction that takes place when objects send stimuli

to one another (interaction diagrams). Jacobson has a method for modeling the entire

proposed system using use cases. This model is a

graph with actor nodes (aX), use case

nodes (uX), and communication arcs as shown in Figure 5. The actor nodes represent the

actors, the use case nodes represent a natural language written use case, and communication

arcs show which actors deal with which use cases

(Jacobson 1995).

Figure 3 Interaction of Actors, Future System and Use Cases

Outside entities (actors)

SYSTEM

o
[
<

L Use cases

Figure 4 Jacobson Notation for Combining Use Cases (taken from Rumbaugh 1994)

Check
baggage

Ovals represent use cases

extends

extends

%,
Upgrade
seat

*,

11

Figure 5 Jacobson’s Use Case Model (taken from Jacobson 1995)

ucl

communication arc
uc2 uc3

Possible Uses Of Scenarios

Scenarios for software systems have many uses throughout the entire software
lifecycle. Scenarios can aid in requirements elicitation and analysis, design, testing and so

on.

Requirements

Scenarios help elicit and clarify requirements. Scenarios are effective in prompting
and answering questions about requirements. They simulate future situations with the target
system and allow end users to experience, to some degree, what it would be like to work with
the future system. They allow users to evaluate and comment on the suitability of the
proposed system. Scenarios help draw out the non-explicit knowledge and experience that
users and other stakeholders possess which help build up and clarify requirements. Scenarios

also help bring to light the relation between functional and non-functional requirements.

12

(Potts, Takahashi, Anton 1994; Carroll 1995; Kyng 1995; Karat 1995; Holbrook 1990; Leite
et al. 1997)

Quite often, working with one scenario will stimulate ideas about other scenarios or
situations, leading to more robust requirements. Scenarios also help validate the

requirements specification (Kramer and Keng 1988; Hsia et al. 1994).

Design

Ivar Jacobson uses object use cases in the design phase to create object models.
Object use cases show the interaction among software components as a result of an external
stimulus as shown in Figure 6. An actor’s input to the system, as shown in a use case, is the
external stimulus. For each use case, software objects that will accomplish the use case are

identified and described. (Jacobson 1995)

Figure 6 Jacobson's Use Case Model for Design Showing Software Components that
satisfy a Use Case

SYSTEM
Outside entity (actor)
AP B
&
C
V\ °
™~
F
I E
N
External Stimulus Sofiware
and Response components

13

In addition to using use cases in design, the behavior of the design can be
communicated to users via scenarios and the suitability of the design evaluated (and
corrected) before the final system is delivered. Scenarios are useful tools to facilitate
communication between users and designers. Watching users and other stakeholders work
with scenarios help designers observe behaviors and know why the behaviors were chosen
and also prompts users to indicate the purpose and constraint expected of each action or step

in a scenario. (Nardi 1995; Holbrook, 1990; Sutcliffe 1997)

Testing

Scenarios provide a basis for testing also. Scenarios drive requirements. Together,
scenarios and requirements drive test cases for system testing as shown in Figure 7. If the
final system does not behave as described in an approved scenario, then the system may not

be acceptable (and vice versa). (Hsia et al. 1994; Nielsen 1995)

Figure 7 Portion of Two-dimensional Waterfall Model (Davis 1990) showing how
Scenarios and Requirements Affect Testing

Scenarios L Test | System
Requirements cases Testing
. Integration
Design Testing
Code & Unit
Test

14

Other Issues

There is a multitude of other uses, which do not fall into one exact phase of the
software lifecycle. The field of HCI (Human Computer Interaction) benefits from being able
to use scenarios to first run through proposed screens and operations to help ensure goals are
being met and to test HCI theories. Figure 8, Figure 9, and Figure 10 show a fictitious
sequence of such screens. Users and other stakeholders can be shown these screens and the
actions taken to get to each screen and evaluate the suitability of the proposed design. User-
centered design and participatory design, where the end user is explicitly involved in the
design process, benefits greatly from the use of scenarios. Scenarios facilitate user and
designer interaction and involvement and help each side get their views of the system across.

(Campbell 1992; Nielsen 1995; Chin, Rosson and Carroll 1997)

Figure 8 Screen 1.0 Welcome Screen for Proposed System

EXIT Previous INTRO HELP
Screen

Welcome to Colorado Mountain Park

Wildlife Directions

15

Figure 9 Screen 1.2 Resulting from User Selecting ‘Wildlife’ from Welcome Screen

EXIT

Previous
Screen

INTRO

Colorado Mountain Park Wildlife

Figure 10 Screen 1.2.2 Resulting from User Selecting ‘Birds’ from Screen 1.2

EXIT Previous INTRO HELP
Screen
Colorado Mountain Park Birds
Song Predatory
Hummingbirds Birds Birds | Other |

16

Scenarios help clarify policy issues and division of responsibility between the system
and user along with challenging assumptions about system boundaries. As Muller et al. point
out, scenarios are good at ‘problematizing’ situations. Problematizing is the process of
transforming one’s assumptions (that may be assumed differently by different people) into
open questions. They help bring unexamined, tacit knowledge out to the open. (Potts,
Takahashi, Anton 1994; Muller et al. 1995)

Scenarios provide a basis for training and team building. Many times scenarios are
very useful to describe in users manuals and other documentation. (Karat 1995; Muller et al.

1995; Kramer and Keng 1988)

State Of The Practice: Scenario Presentation Formats and Ranges Of Media

Scenarios can take on nearly any form possible. Jack Carroll states some of those
forms to be: textual, storyboard, video mockup, scripted prototype or even a physical
situation contrived to support certain physical activities (Carroll 1995). However, many
authors have gone beyond those mentioned by Carroll, broadening the range to include
nearly everything from an informal text or drawing to a more formal grammar, Language
Extended Lexicon, or animation of data flows (Hsia et al. 1994; Leite et al. 1997; Kramer
and Keng 1988; Muller et al. 1995). There are authors who advocate an informal
representation and there are authors who advocate a more formal or structured representation.
For the purpose of this paper, informal methods are those which do not take a lot of
preplanning nor have strict rules to follow for creating a scenario while formal methods do

take planning (i.e. animation/prototyping) or have more rules or guidelines for creating a

17

scenario (i.e. scenario trees and use cases). The boundary between informal and formal is

blurry and not very important for this thesis.

Informal

Joseph Goguen, who was with the Centre for Requirements and Foundations at
Oxford University, claims that the requirements process is social in nature. Therefore,
requirements engineering can never be an entirely formal process because the goal of
requirements elicitation and analysis is to discover stakeholders’ needs and reconcile them
with technical possibilities (Goguen 1993). Tom DeMarco shares this opinion (DeMarco
1996).

Muller et al. are proponents of using a low-tech technique, claiming that using low
tech representations help team members maintain a focus on the users’ work process
(perhaps by spending less time focusing on the ‘gadget’ the scenario is represented by or the
medium’s capabilities which are irrelevant to the scenario). In addition, a low-tech
representation helps the team break out of an unsuccessful design. Their process involves the
use of cards and other office supplies (such as Post-Its, highlighters, colored paper, etc.) to
simulate workflows and ideas about design. These materials can be easily manipulated and
changed. (Muller et al. 1995)

One of the most informal representations of a scenario is natural language (e.g.
English text). The next chapter of this thesis gives examples of written scenarios. Authors
such as Karat and Macaulay use plain text representation in their elicitation techniques.
Linda Macaulay brings in all stakeholders to aid in requirements elicitation and requires that

the language and terminology used in the cooperative activity of requirements elicitation be

18

readily understandable by all stakeholders. Stakeholders are all of those who have a stake in
the change being considered, those who stand to gain and stand to lose (Macaulay 1992).
Chin, Rosson and Carroll stress that terminology must be familiar to all participants and that
the terminology, which emerges, relies on the language of the user (Chin, Rosson and Carroll
1997). Karat, too, believes that the problem should be expressed in an easy-to-understand
text description. He used scenarios in the design of a speech recognition system (Karat
1995).

Another means of creating scenarios is described by Jakob Nielsen as a ‘diary
scenario’. A diary scenario is simply a user writing down the activities and situations they
encounter during the day which are relevant to the system. The diary scenario differs from
most scenarios because it describes real observations rather than ideas about a non-existent
system that will be built in the future (Nielsen 1995).

Storyboarding (a technique originally created by Disney in the 1930s (Zahniser
1993)) can span the range between informal and more formal scenarios. A storyboard is a
sequence of displays that represent functions that the system may perform when implemented
(Andriole 1989) as shown in Figure 8, Figure 9, and Figure 10. This may be as simple as
using paper and pencil (or other office supplies as Muller et al. have done) to sketch out
possible screens or workflows, or the storyboard may be created using a computer and even
animated. Storyboarding is a popular technique because it is cost-effective while being a
dynamic and ‘live’ tool. It also provides a means to test alternatives quickly (Andriole

1989).

19

Formal

A scenario may be represented via a prototype. Thomas Erickson’s definition of a
prototype includes anything from a pencil sketch or foam mock up to a slideshow, videotape,
or partial implementation (Erickson 1995). Arguably, a pencil sketch or foam mock-up
could be thought of as an informal method while partial implementations thought of as more
formal. Generally, when dealing with scenarios, a prototype will be created to simulate that
particular scenario or path through the system and may not be robust enough to show any
other functionality. An example of such a prototype is Alistair Sutcliffe’s ‘concept
demonstrator’ which is a limited prototype to run a scenario (Sutcliffe 1997). Sutcliffe used
the concept demonstrator for a shipboard emergency management system. Hooper and Hsia
also advocate the use of a ‘quick and dirty’ prototype to run their scenarios. They provide a
sketch of the system based on the requirements as perceived. Their attempt is to capture the
conceptual system as visualized by the user by use of operational examples or scenarios.
They do not find it necessary to model the system or any component directly, but rather
represent the performance of the system for selected events (Hooper and Hsia 1982).

Several authors represent their scenarios using diagramming or data flow techniques.
Animating the data flows is one way of playing out a scenario. Animation adds a dynamic or
real time feel to the scenario. When input is needed from the user, or when there is a part of
the scenario for 4Which there is missing information, dynamic prompts can ask users for
information as the scenario is running (Kramer and Keng 1988). Figure 11 shows a diagram
of one Kramer and Keng’s scenarios. When animated, the user is guided along the diagram

showing them where in the scenario they are currently.

20

Figure 11 Diagram of the Monitor Patient Scenario (taken from Kramer and Keng
1988)

BE==———————=———= Monitor Patient]

fourrent 1378

" Generate iReadings Check Alarm Eon
Patient £ |
EJ——] Health | Reedings | Resdings signal
£ L1 Alter Safety
Limits

Graphical description of a transaction

Use cases combine written English with diagramming for an overall model as
described on page 9 , blending the line between being an informal or formal method. The
written use case describes an actor’s interaction with the system in a specific case and
interaction diagrams show how the objects, events and stimuli interact. Another notation
shows how the use cases themselves fit together (i.e. which use case ‘uses’ or ‘extends’
another use case) as shown in Figure 4 (Rumbaugh 1994; Jacobson 1995).

Leite et al. combine many different diagramming techniques to create different views
of a scenario to make up their ‘Requirements Baseline Conceptual Model’. The Basic Model
View and Scenario Model View use the entity relation framework or diagrams (ER
diagrams) with examples shown in Figure 12 and Figure 13. The Lexicon View is composed

of a Language Extended Lexicon that records the signs, words or phrases that are peculiar to

21

the domain and is not a diagram itself (similar to a dictionary). Figure 14 is an example of a

Language Extended Lexicon entry based on the passport emission domain. Different views

of a scenario can be seen using hypertext. (Leite et al. 1997)

Figure 12 An example of the Basic Model View (taken from Leite et al. 1997)

1

CLIENT 1e35Hen i
o action | 2

ars
discamposed
in

‘¢
n

LERsianE >
EXTERNAL @:.de

nsirain

QUTPUT

Iu:wt.| <> LU

Model

EVENT 8
11&3“
Vol
i
T
N
Es?lc-'lrhﬁﬁl'aé TEMPORAL
STIMULUS
1) are
signaled
by
! 1 penerale gansrals
<
INPUT n a

The ER Diagram for the Baseline Basic -

22

Figure 13 An example of the Scenario Model View (taken from Leite et al. 1997)

is bonckd by

@n

egdanxd &

¢

_on

—

Grtet

@D

stisies ()

(LD

Sermio | (LD

-0

(11

(L)

(iﬂ v

hs-<>—

kL

)

Resare

The ER Diagram for the Scenario Model

(LD

% Fsae /(4

23

Figure 14 Language Extended Lexicon Entry: Picture Cabin (taken from Leite et al.

1997)
Picture Cabin
e Notion:
e It is a sector of the Documents and
Certificates Division
e It is where the citizen’s picture is taken and
charged

e Behavioral Response:
e The form is stamped with the same number as
the picture
o The citizen receives two pictures
The picture cabin clerk archives the third
picture

The Center for Software Systems Engineering at the University of Colorado at
Colorado Springs uses the Backus Naur Form (Backus 1959) grammar to formally define its
scenarios (see Figure 15). Its scenarios have four basic elements: inputs to the system,

outputs from the system, timing constraints and set of initial conditions. (UCCS 1997)

Figure 15 Formal Model of Scenarios - Center for Software Systems Engineering at
UCCS (taken from UCCS 1997)

SCENARIO = <IC> <SCENARIO BODY>
SCENARIO BODY =<SCENARIO STEP> |
<SCENARIO BODY> <SCENARIO STEP>
SCENARIO STEP = <INPUT> <I-O0>" <OQUTPUT> [<O-I>]"
INPUT =<p>M
I = External-entity Action [<I-I>*]
OUTPUT =<0o>N
0 = Action External-entity [<O-O>]
IC = Initial states and conditions
I-1 = A maximum time allowed between two stimuli*
I-0 = A maximum time allowed between the arrival of the stimuli
and the system’s response*
O-1 = A maximum time allowed between the system’s response
and the next stimulus from the environment*
0-0 = A maximum time allowed between 2 or more system
responses™®
Superscripts indicate item can occur 1 to M,N,P or R times * = Dasarathy 1985

24

Another formal approach to creating scenarios is to combine scenario trees, a
grammar and a conceptual (finite state) machine as detailed by Hsia et al. The scenario tree
is composed of nodes with each node representing a state as the user perceives it. The initial
state is the root node. The tree is then converted into a formal grammar such as the one in
Figure 16 using an algorithm. A deterministic finite state machine is then created from the
grammar. This finite state machine is called a conceptual state machine. Because of the
algorithm and formal method used, Hsia et al. claims this method ensures consistency, lack

of redundancy, and internal completeness of the generated scenarios. (Hsia et al. 1994)

Figure 16 Grammar for the Caller view of a Telephone System (taken from Hsia et al.
1994)

GV = (NT, S> Ra A)

S = {Off H. Not9, d, R, Cpu, talk, Chup, On_H}

NT= {Caller, <FD>, <Int>, <Third>, <Fourth>, <Action>, <Talk>, <Fin>}
A= Caller

R= {Caller -> Off H <DialTone>,

<DialTone> -> Not9<InternalCall>,

<Int> -> digit<Third> | On-H

<Third> -> digit<Fourth> | On-H, <Fourth> -> digit<Validating> | On-H,
<Validating> ->Ring<Connecting> | On_H | Busy<TryAgain> | <disconnected>

John Anderson and Brian Durney take a different approach. They use scenarios to
identify missing capabilities that, if included, would enable system users to reach their goals.
They also use scenarios to determine whether a particular objectives set will allow prohibited

transactions. They use as input a set of supported and prevented objectives expressed as

25

transitions between states. Their approach searches for incompleteness (not being able to
reach a goal) and unsafeness (being able to complete an action that should not be allowed).

Chin, Rosson and Carroll supplement written scenarios with videotaped scenarios as
part of their Task Artifact Framework (TAF). TAF has four stages: scenario generation,
claims analysis, features envisionment and scenario envisionment. They find that written
scenarios tend to be a bit more abstract and less real than video scenarios. With video
scenarios, participants can see the scenario in the same form as they experience it (Chin,
Rosson and Carroll 1997). Depending on the amount of preplanning needed for a video
scenario, it could be argued that video scenarios are informal scenarios.

The range of representations of scenarios varies greatly. Table 2 shows a brief

synopsis of the formats discussed.

26

Table 2 Scenario Representations

Cards and other office supplies Natural language (i.e. written English)

» (Muller et al. 1995) » (Karat 1995; Macaulay 1992; Chin,
Rosson and Carroll 1997)

Diary Storyboarding (paper)

» (Neilsen 1995) » (Muller et al. 1995; Rosson and Carroll
1995)

Physical situations contrived to support
user activities

Prototype
> (Sutcliffe 1997, Hooper and Hsia 1982; | > (Kramer and Keng 1988)
Carroll 1995; Erickson 1995; Nielsen

1995)

Use cases Requirements baseline conceptual model

» (Jacobson 1995; Rumbaugh 1994) (Entity Relation diagrams, Lexicon,
hypertext)
» (Leite et al. 1997)

Scenario tree, grammar and conceptual Video mock-ups / scenarios

state machine » (Carroll 1995; Chin, Rosson and

» (Hsia et al. 1994) Carroll 1997)

Storyboarding (computer) Supported and prohibited objectives to test

> (Andriole 1989) for unsafeness and incompleteness

» (Anderson and Durney 1992)

Backus Naur Form grammar
» (UCCS 1997)

What Makes a Good Scenario?

Not a lot of literature exists on what makes a good scenario (Karat 1995), but some
authors have alluded to it. For example, Holbrook states that tutorials in users manuals are
good examples of scenarios (although he does not state what it is about the tutorials that

make them good examples) (Holbrook 1990). Nielsen states that scenarios should explicitly

27

include a time dimension of what happens (Nielsen 1995) and, along the same lines, Kramer
and Keng discuss the need to model timing behavior in animated scenarios (Kramer and
Keng 1988).

Hsia et al.’s method allows for the checking of correct, complete, consistent and
validated scenarios (Hsia et al. 1994). The Center for Software Systems Engineering at the
University of Colorado at Colorado Springs strives for scenarios that are complete,
consistent, correct, and with initial conditions described (UCCS 1997).

Many people believe that scenarios should reflect what the users are or will be doing.
Scenarios must be described in the natural work setting and grounded in activities of the real
world in order to get ‘buy-in’ from the users. (Nardi 1995; Chin, Rosson and Carroll 1997)
In the same vein, use cases, like scenarios, must strive to solve the right problem by
involving the users in analysis (Rumbaugh 1994).

Some people claim that concrete, specific scenarios are better than general or
ambiguous scenarios. They claim concreteness is an important attribute because concrete
scenarios describe particular instances of use and users work in the specific and not the
abstract. Concrete scenarios help surface atypical events, while ambiguous scenarios may
gloss over the exceptional cases and stick to the typical situations. (Potts, Takahashi, Anton
1994; Carroll 1995; Kyng 1995; Rosson and Carroll 1995)

However, in the beginning stages of requirements gathering, Thomas Erickson likes
scenarios that may be a bit more ambiguous because of their ability to gather more
information. Like stories, ambiguous scenarios have many interpretations leading to people
swapping stories or scenarios and aiding in team building. People will fill in the gaps of

ambiguous scenarios differently, again leading to different sources of ideas. A ‘rough’ or

28

incomplete scenario gives the feeling that it “ain’t done yet’ (Erickson 1995) and decreases
the level of commitment to design. When users think that a lot of time, thought and effort
have gone into a design, they may tend to limit their ideas or thoughts to those similar to the
design shown. A less polished scenario allows people to be freer in coming up with ideas
instead of thinking they are tied down to something similar to the design shown through the
scenario.

Whether concrete or abstract, scenarios must be understood by all participants (Chin,
Rosson and Carroll 1997, Karat 1995). The language and terminology used in the scenarios
should be understandable by all stakeholders involved in requirements elicitation. If they
cannot understand the scenario, stakeholders will not be able to clearly analyze the scenario.

Morten Kyng prefers requirements scenarios that are closed with no external
references and reflect situations that the software system will support. They serve as
discussion tools for software design, and not the work situation (Kyng 1995). In other words,
after the entire workflow has been described, requirements scenarios should only describe the
software system interactions.

As far as length is concerned, Nardi believes that good scenarios should be short, fun
and vivid. He also believes that maintaining data quality is important (Nardi 1995). With
respect to use cases, James Rumbaugh claims a use case ‘follows a [single] thread of control
in and out of the system’ (Rumbaugh 1994). Figure 17 highlights the different attributes that

are thought to make a good scenario.

Figure 17 Attributes of a Good Scenario

29

Timing behavior modeled

e (Nielsen 1995, Kramer and Keng 1988)

Correct

e (Hsia et al. 1994, UCCS 1997)

Consistent

e (Hsia et al. 1994, UCCS 1997)

Complete

e (Hsia et al. 1994, UCCS 1997)

Initial Conditions Described

e (UCCS 1997)

Incomplete

e (Erickson 1995)

Validated

e (Hsiaet al. 1994)

Concrete / Specific

o (Potts, Takahashi, Anton 1994; Carroll 1995; Kyng 1994; Rosson and Carroll
1995)

Ambiguous / Rough in beginning

e (Erickson 1995)

Language and terminology understood by all

e (Chin, Rosson and Carroll 1997, Karat 1995)

Closed / No external references

e (Kyng 1995)

Reflect reality and solve the right problem

e (Nardi 1995; Rumbaugh 1994; Chin, Rosson and Carroll 1997)

Short

e (Nardi 1995)

Fun

e (Nardi 1995)

Vivid

e (Nardi 1995)

High data quality

e (Nardi 1995)

Single Threaded

¢ (Rumbaugh 1994)

30

From Figure 17 it is obvious that not everyone believes in the same traits for
scenarios. Some characteristics even conflict (such as ambiguous / concrete and complete /
incomplete).

As mentioned above, modeling timing behavior or constraints is a good quality to
have of a scenario (Kramer and Keng 1988). Dasarathy has researched methods of
expressing and validating timing constraints of real-time systems (although not directly
through the use of scenarios). He defines two types of timing constraints: those that are
performance related (limiting responses of the system) and behavioral related (limiting users’
stimuli). The three types of temporal restrictions that can be placed on timing constraints are:
maximum, minimum or durational, leading to a combination of stimuli/response max/min
timing constraints. Dasarathy models the timing constraints via Finite State Machines and
languages such as RTRL (Real Time Requirements Language — from GTE) and the ATLAS
test language. He uses such functions or primitives as ‘interrupt’, ‘latency’, ‘timer’, ‘delay’

and state transitions to model maximum, minimum and durational constraints for a system.

(Dasarathy 1985)

Attributes Of a Quality Software Requirements Specification (SRS)

The Software Requirements Specification (SRS) captures the results of requirements
elicitation from using such tools as scenarios. Research has been done into what makes a
quality SRS. Looking at the attributes of a quality SRS may give some insight into the
attributes of a quality scenario since the SRS is the end result of using scenarios. Table 3

shows the different attributes that are believed to make a quality SRS along with the authors

31

that desire those attributes. When available, a definition is also given. These attributes are

shown in alphabetical order.

Table 3 Attributes of a Quality SRS

ATTRIBUTE AUTHOR(s)

Achievable A. Davis and Overmyer et al. 1993

(there could exist at least one system
design and implementation that correctly
implements all the requirements stated in
the SRS (A. Davis and Overmyer et al
1993))

Adaptable to changes in the nature | Roman 1985
of the needs being satisfied by the
component

Annotated by relative importance A. Davis and Overmyer et al. 1993

(reader can easily determine which
requirements are of most importance to
customers, which are next important, etc.
(A. Davis and Overmyer et al. 1993))

Annotated by relative stability A. Davis and Overmyer et al. 1993

(reader can easily determine which
requirements are of most likely to change,
which are next most likely, etc. (A. Davis
and Overmyer et al. 1993))

Annotated by version A. Davis and Overmyer et al. 1993

(reader can easily determine which
requirements will be satisfied by which
versions of the product (A. Davis and
Overmyer et al. 1993))

Appropriateness Roman 1985

(SRS captures, in a manner that is
straightforward and free of implementation
considerations, those concepts that are
germane to the system’s role in the
environment for which it is intended
(Roman 1985)

i

32

ATTRIBUTE

AUTHOR(s)

At right level of Abstraction / Detail

A. Davis and Overmyer et al. 1993

Complete

(exhaust all known needs and objectives)
Farbey 1990))

(everything the software is supposed to do
is included in the SRS; responses of the
software to all realizable classes of input
data in all realizable classes of situations
included; all pages, figures and tables
numbered, named and referenced; all
terms defined; all units of measure
provided and all reference material present;
no pages marked ‘To Be Determined’ (A.
Davis and Overmyer et al. 1993))

Holbrook 1990,

Farbey 1990,

A. Davis and Overmyer et al. 1993,
Roman 1985

Concise / Economy of expression

(SRS is as short as possible without
adversely affecting any other quality of the
SRS (A. Davis and Overmyer et al. 1993))

A. Davis and Overmyer et al. 1993,
Roman 1985

Consistent

(Internally consistent. no subset of
individual requirements stated therein
conflict;

Externally consistent. no requirements
stated therein conflicts with any already
baselined project documentation (A. Davis
and Overmyer et al. 1993))

Holbrook 1990,

Farbey 1990,

A. Davis and Overmyer et al. 1993,
Roman 1985

Constructability

(there exists a systematic approach to
formulating the requirements (potentially
computer assisted) (Roman 1985))

Roman 1985

Correct

(absence of incompleteness and
redundancy (Davis and Rauscher 1979))

(every requirement represents something
required of the system to be built (A. Davis
and Overmyer et al. 1993))

Davis and Rauscher 1979,
A. Davis and Overmyer et al. 1993,
Farbey 1990

33

ATTRIBUTE

AUTHOR(s)

Cross-referenced

(cross-references are used in the SRS to
relate sections containing requirements to
other sections containing: identical /
redundant requirements; more abstract or
more detailed descriptions of the same
requirements; requirements that depend on
them or on which they depend (A. Davis
and Overmyer et al. 1993))

A. Davis and Overmyer et al. 1993

Design Independent

(there exist more than one system design
and implementation that correctly

implements all requirements in the SRS (A.

Davis and Overmyer et al. 1993))

A. Davis and Overmyer et al. 1993

Effective

(does the SRS solve the right problem?
(Farbey 1990))

Farbey 1990

Electronically stored

(the entire SRS is in a word processor, it
has been generated from a requirements
database or has been otherwise synthesized
from some other form (A. Davis and
Overmyer et al. 1993))

A. Davis and Overmyer et al. 1993

Executable/interpretable/
prototypable

(there exists a software tool capable of
inputting the SRS and providing a dynamic
behavioral model (A. Davis and Overmyer
et al. 1993))

(functional simulations can be constructed
from its requirements specification prior to
starting the design or implementation
(Roman 1985))

A. Davis and Overmyer et al. 1993,
Roman 1985

Modifiable / Maintainable

(structure and style is such that any
changes can be made easily, completely

Holbrook 1990,

Farbey 1990,

A. Davis and Overmyer et al. 1993,
Roman 1985

34

ATTRIBUTE

AUTHOR(s)

and consistently (A. Davis and Overmyer
et al. 1993))

Not Redundant

(SRS is redundant if the same requirement
is stated more than once (A. Davis and
Overmyer et al. 1993))

A. Davis Overmyer et al. 1993

Organized

(contents are arranged so that readers can
easily locate information and logical
relationships among adjacent sections is
apparent (A. Davis and Overmyer et al.
1993))

A. Davis and Overmyer et al. 1993

Performance constraints captured

Farbey 1990,
Roman 1985

Precise

(numeric quantities are used whenever
possible and the appropriate levels of
precision are used for all numeric quantities
(A. Davis and Overmyer et al. 1993))

A. Davis and Overmyer et al. 1993,
Roman 1985

Predictable / Testable / Verifiable

(cost-effective procedures exist that allow
one to verify if the design and/or
realization of some component satisfies its
functional and non-functional requirements
(Roman 1990))

(there exists finite, cost-effective
techniques that can be used to verify that
every requirement stated therein is satisfied
as built (A. Davis and Overmyer et al.

Farbey 1990,

Roman 1985,

Holbrook 1990,

A. Davis and Overmyer et al. 1993

1993))
Readable Farbey 1990
Reusable A. Davis and Overmyer et al. 1993

(sentences, paragraphs and sections can be
easily adopted or adapted for use in a
subsequent SRS (A. Davis and Overmyer
et al. 1993))

Serviceable

Farbey 1990

35

ATTRIBUTE

AUTHOR(s)

(provides a firm basis from which to
proceed (Farbey 1990))

Tolerant of temporary Roman 1985
incompleteness
Traceable Holbrook 1990,

(SRS is written in a manner that facilitates
the referencing of each individual
requirement (A. Davis and Overmyer et al.
1993))

(ability to cross-reference items in the
requirements specification with items in the
design specification (Roman 1985))

Farbey 1990,
A. Davis and Overmyer et al. 1993,
Roman 1985

Traced

(origin of each of the requirements is clear
(A. Davis and Overmyer et al. 1993))

A. Davis and Overmyer et al. 1993

Unambiguous

(every requirement stated therein has only
one possible interpretation (A. Davis and
Overmyer et al. 1993))

(two or more interpretations cannot be
attached to a particular requirement
(Roman 1985))

Holbrook 1990,

Farbey 1990,

A. Davis and Overmyer et al. 1993,
Roman 1985

Useable after implementation

Farbey 1990

Useable

Holbrook 1990

Table 3 shows 32 attributes that different authors believe are important for a quality

SRS. Some definitions are similar (such as effective / appropriate and electronically stored /

constructable). They all strive to create a quality SRS; one that contributes to successful,

cost-effective creation of software that solves real user needs (A. Davis and Overmyer et al.

1993). It would be a near miracle to create an SRS that contained all these attributes because

in order to achieve one attribute, another attribute may suffer (such as unambiguous vs.

concise). Instead, trade-offs must exist among the attributes.

CHAPTER 3

APPROACH AND RESULTS

Approach

This thesis defines and justifies attributes for a quality scenario and scenario set.
There are some attributes that are applicable to a set of scenarios, and not to a single scenario
(such as the attribute ‘scenario set consistency’ defined on page 56). Both single scenario
and scenario set attributes will be defined.

Figure 18 shows the sources used to create the attribute list in this thesis. Quadrant 1
represents those attributes that are common to current thinking of what makes a quality
scenario and a quality SRS. Quadrant 2 represents quality attributes of an SRS that currently
are not attributes of scenarios. Quadrant 3 represents current scenario attributes that are not
common to SRS attributes. Quadrant 4 represents attributes that are not included in the
current thinking of quality scenarios or quality SRS and are new or fresh ideas on scenario
quality. To create the attribute list, I will look first to sources in quadrant 1, then quadrant 2,
quadrant 3, and then new thinking in quadrant 4. For the purpose of scope and focus, the
scenarios in this paper will be represented in written form.

My approach to my thesis is to list, define and justify attributes of a quality

scenario/scenario set. To achieve this, I will give a definition of a scenario and define the

37

goal of scenarios used in requirements elicitation. I will also discuss the idea or symbology
behind the ‘requirements funnel’. I will describe this funnel since where one is located
within the funnel may affect the attributes one wants for their scenario.

After scenario, goal and funnel definitions, I will synthesize previous work done in
the area of scenarios and in the area of quality attributes of an SRS (as mentioned in chapter
2). I will examine and expand upon those quality attributes that are common to both a good
scenario and a quality SRS (quadrant 1 in Figure 18) for consideration as candidates for the
attribute list of what makes a quality scenario/scenario set. Then I will look at attributes that
are not common to both (quadrants 2 and 3 in Figure 18) and expand upon and add the
appropriate attributes to my list. Next, I will create and add to the list ‘new’ attributes, or
attributes that are fitting for a quality scenario/scenario set, but have not been mentioned

before for scenarios or SRSs (quadrant 4 in Figure 18).

38

Figure 18 Thesis Sources: Current Thinking on Quality Attributes of Scenarios
(Quadrants 1 and 3), Quality Attributes of an SRS (Quadrants 1 and 2) and New

Thinking (Quadrant 4)
SRS Not included in
Current current thinking
thinking on on what makes
what makes a a quality SRS
quality SRS
Current
thinking on Attributes common to Current quality
what makes a current thinking on scenario attributes not
quality scenario quality scenarios and common to quality SRS
8 SRSs 1 3 pari butes
% Not included in 2 4
O ¢ thinki
2] 2T“;n]at makes Quality SRS attributes not '))
a quality common to current quality Quality scenario attributes
scenario scenario attributes, but do not common 1o current
pertain to scenarios quality SRS attributes or
current scenario attributes

All of the above will be accomplished in this chapter. The subsequent chapter,
chapter 4, will validate the attribute list defined in this chapter. Chapter 4 will explain how
each attribute is necessary. Necessity will be accomplished by showing if an attribute is not
included in a scenario or set of scenarios then the software lifecycle, or other software

functions, will be adversely affected.

39

Results

Definition of a Scenario

As Table 1 in chapter 2 points out, there are many definitions for a scenario. The
definition that seems most accurate without dictating a methodology is ‘a sequence of
interactions between a solution system and its environment which serves as a representative
example of how some system feature works’ (UCCS 1997). This is the definition that will be

used throughout this thesis.

Goal of Using Scenarios for Requirements Elicitation

The goal for using scenarios for the purpose of requirements elicitation is: to gain as
much knowledge as possible of what the stakeholders want the proposed system to do and
how they want it to behave. Scenarios do this by allowing designers and stakeholders to
communicate their ‘view” of the proposed system through sample interactions with the future
system, correcting and adapting the scenarios as requirements are surfaced and refined.
Scenarios help bring out tacit or implied knowledge, a type of knowledge that is very hard
for other requirements elicitation techniques to capture. They also help bring into the open
any assumptions that the stakeholders may have by problematizing the situation (see page 16

for a definition of problematizing).

40
The Requirements Funnel

The requirements elicitation process can be thought of as a funnel as shown in Figure
19. The top, wide portion of the funnel represents the beginning steps of finding out the
requirements of the system. In the beginning, there are many options or possible ways to
build the system until the requirements team learns exactly what the users want. As they
learn more and more, the options become fewer and fewer and the understanding of the
system becomes more and more refined. This is symbolized by moving down the funnel as it
narrows, showing the reduction of options and refinement of requirements. The requirements
team may learn about different features of the system at different times. While they may be
refining the requirements of some features (such as feature C in Figure 19), they may be still

at the top of the funnel with others (such as feature A in Figure 19).

Figure 19 The Requirements Funnel

Feature A
Direction of
movement Featurec B
Feature C

Where the requirements team is located in the funnel may affect the type of attributes
desired in their scenarios. For example, as a requirements engineer, if you are just starting out

on the project (at the top of the funnel) and have little domain knowledge you may want

41

scenarios that are a little rough or ambiguous. Two reasons for this are: 1) you do not know
enough information to create a concrete scenario and 2) rough or ambiguous scenarios have
gaps in them that can be filled in by the customers. As the customers fill in the missing gaps,
you gain more insight and information into the domain and requirements of the future
system, allowing you to eliminate some options and move further down the funnel. If you
tried to ‘guess’ and create a specific, concrete scenario you may miss the boat completely and
waste time spinning your wheels on something non-applicable.

After gaining requirements information from users via rough scenarios, the
requirements team moves ‘down’ the funnel and the scenarios can be refined and made more
concrete, allowing for detailed and specific scenarios to be created. The benefit of concrete
scenarios is that users work in the concrete or specific and not the abstract (Kyng 1995). The
more specific the scenario, the more refined the requirements will be.

In the following sections, each attribute listed will give a ‘tolerance for exclusion’
rating (low, medium or high). Attributes with a high tolerance for exclusion mean there is
quite a bit of leniency in not including this attribute at the beginning of the requirements
funnel, or not to include the attribute to its fullest degree at the funnel top. Attributes with a
low tolerance for exclusion mean the attribute should be included from the beginning or top

of the funnel.

How to Describe the Attributes

The rest of this chapter explains the attributes of a quality scenario / scenario set.
Some of the attributes are applicable to a set of scenarios; some are applicable to a single

scenario. As mentioned in chapter 2, Table 2, there are many possible representations for

42

scenarios. For the purpose of this thesis, scenarios will be represented in a written form.

Each attribute description includes several subsections:

1

2

The definition of the attribute is given.
The origin of the attribute explains if the attribute is new, or an idea spawned off from a
similar definition of an SRS or scenario attribute as described in chapter 2.

Further explanation of the attribute is given as needed.

The tolerance for exclusion is a rating of how tolerant a quality scenario can be to not

include this attribute, or to not include it completely (see previous paragraph for a further
explanation).

The justification for inclusion describes why the attribute is needed.

Each attribute description also provides two examples: one example is what a scenario
or set of scenarios would be like if the attribute was not included, and the other example
shows the improved scenario or set of scenarios that contains the attribute. The
examples may highlight just a segment of a scenario to show the inclusion or exclusion
of the attribute and may or may not include other attributes.

Lastly, each attribute is marked whether the attribute applies to a single scenario or a set

of scenarios.

Attributes Common to a Quality SRS and Current Thinking of What Makes a Good

Scenario

Table 4 combines the information in Figure 17 Attributes of a Good Scenario and Table 3

Attributes of a Quality SRS in chapter 2. The scenario attributes are column headings

(horizontal) and the SRS attributes are row headings (vertical). The common attributes are

43

marked with a check and include: complete, concise / short, consistent, correct, capture
performance or timing constraints, right level of abstraction / detail (ambiguous or concrete),

understandable / readable and tolerant of temporary incompleteness / incomplete.

JuIISISU0O

uotssordxs
Jo Awouood
/ 9sI0U00

a30jdwos

Tresep /
uonoensqe
Jo 1oA9]
WU

SSaU-
sreudoidde

UoISIdA AqQ
pajejouue

Aiqels
2AnR[RI Aq
paigjouue

sourepodut
aanelaI Aq
pareiouue

paisnes
Suraq
sSpasu oy}
Jo aimeu
sy ut
sa3ueyo 01
sjqeidepe

s|qeastyor

yenb
Tep
urey
urey

amL
8ug

suon
puo)
Jentug

u
n

J

P P e T

©w S O o=

siqe-
puvlsIpuN

wdyqoid
W3

Ay} sA[OS
pue
Anyeas
FRENIEN

$20UdI9J3X
JeuIagxs
ou

/ pIsopd

Suuuidaq
ury3nox
/ snon
-3iqure

oytoads /
91010400

pajeprEa

a1[dwoout

a19[dwos

JU)SISUOD

1001100

pe
-[epows

01
-ARY2q
Sutum

SySs

I

OHIRUdOS

144

SUS Leng) € jo sINqLIy pue sQNQLIIY OLIBUIG POOL) U0 SUnjuIy], JUd.LIN)) p IR,

(penunuo)) 3[qeL,

alqeyHeA
/o1qe1s3}
/e1qesotpaid

EN RN

paimdes
SJUTRIISUOD
a0ue
-unoyred

pazuedIo

uepunpal
10U

J1qe
-urejurewx

/A1qegIpows

oIqe
-dfy0101d
e1qe
-jaxdrour
/31qEIN0aXa

paI03s Ajje
-OTUOIPId

EYNVREN S E)

uap
uvadoput
udisop

Paou21ayal
-SS0J0

1031100

Aupqe
-1onIsU0d

1[enb
eyep
ure}
urepy

v«
a1,
[8ug

suon
puod
JeruL

P oo P O

=

1730 = B < T S

a[qe-
pue}sIspu

wajgoid
WS

3y} 2A]OS
pue
Anjeax
191331

SO0URIBJOI
JeuIagxs
ou

/ pasojo

SuwmiSsq
ury3noz

/ snon
-Siquie

onjroads /
91210U00

pajepiea

ajp1dwoout

aardwod

JU)SISHOD

1951100

pa
-Jopowt
Jot
-aeyaq
Sunun

S¥S

—

OLIRU20§

Sy

(penunuo)) 3[qeL,

J1qesn

uone
~Juswajdur
Isye sjqesn

snon
-Siqureun

pooen

s|qeaoeny

ssou
-a1e7dwoout
Areiodwa
JO reIs|o)

9]qESOIAIRS

s]qesnal

a[qepess

fenb
ejep
ure
urepy

—uﬁ
a;y
18ug

suon.
puod
JenuL

P P O

=

n S 0 -

arqe-
puejsIopun)

wisjqoid
WS
ELIEIN (O
pue
Aeax
JLETIE)S

S99UDINJAI
jiiecivel
ou

/ pasolo

Suruuidaq
uj y3nox
/snon | otfroads /
-Siquie | 93U0D | pajepIEA

se[dwoout

a197duos

JUS)SISUOD

1031100

po
-Jopow

Jol
-ARYaq
Suiun

Sds

I

ourRu0g

14

47

The attributes listed on page 43 represent the intersection of current thinking on good
scenario traits and attributes of a quality SRS as stated in chapter 2 and represent quadrant 1
in Figure 20. From the intersection attributes, I propose the attributes for a quality
scenario/scenario set to include: complete scenario, complete scenario set, concise, discrete,
single scenario consistency, scenario set consistency, timing constraints modeled, right level
of abstraction / detail, and understandable.

The attribute ‘correct’ is not included in this set of attributes for a quality
scenario/scenario set although it is in quadrant 1 of Figure 20. In order for a scenario to be
correct, users and designers need to validate that the scenario is correct. ‘Validated’ is an

attribute that takes the place of ‘correct’ and is described on page 79.

Figure 20 Attributes Common to Current Thinking on Quality Scenarios and SRSs

SRS Not included in
anept current thinking
mﬂmm%a;ﬂ on what makes

t makes a a quality SRS
quality SRS

Current

thinking on

what makes a
n quality scenario
o
g 3
% Not included in 2 4
8 current thinking

on what makes P

a quality

scenario

48

1. Complete Scenario

@,
o

K/
L4

)
L4

0/
o

D

1.1 attribute definition: A complete scenario has: 1) at least one input, 2) at least
one output, 3) an external actor or entity performing an action and 4) the future
system performing an action.

1.2 origin: scenario attribute ‘complete’ (by UCCS 1997).

1.3 further explanation: A scenario at a minimum needs an input, an output, an
external entity performing an action and the system performing an action (most
likely the system’s response to an external input) that accomplishes a specific
goal.

1.4 tolerance for exclusion. MEDIUM. An incomplete scenario is not very
meaningful, however, a scenario needs to be tolerant of temporary incompleteness
especially at the top of the requirements funnel. This allows scenario designers to
model what they know while leaving unknown areas marked ‘TBD’ to be filled in
by the team at a later date. A finalized scenario should be complete.

1.5 justification for inclusion. Without inputs, it is unknown what is causing the
scenario to occur. Without outputs, it is unclear what the scenario is
accomplishing. If the system you are modeling is not in the scenario, then the
scenario is of no interest for requirements elicitation. An external entity (human,

sensor, other computer, etc.) must provide the input to the system.

<% 1.6 Example (domain- bank loan program):

Attribute not present

Attribute present

EXAMPLE:

Initial Conditions [page 77]:
System is in ‘Calculate Loan
Payment’ mode

e Customer enters principal
amount and number of
years for loan

e System calculates monthly

EXAMPLE:

Initial Conditions [page 77]:
System is in ‘Calculate Loan
Payment’ mode

e Customer enters principal
amount and number of
years for loan

e System calculates

payment monthly payment
e System prints out
payment schedule
EXPLANATION: EXPLANATION:

This scenario is not complete
because there is no output (just
the internal action of
calculating monthly payment
that the system takes)

This scenario is complete
because the customer is the
external entity, the input is
the principal and # of years,
the system performs the
action of calculating monthly
payment and outputting the
payment schedule.

49

% 1.7 applicable to: |___' set of scenarios |X] single scenario

2. Complete Scenario Set
% 2.1 attribute definition: For each possible state the system can be in, the scenario

set shows what happens when each possible input is received.

7
0.0

/)
S

)
0.0

L 4

0,
**

@
L X4

50

2.2 origin: SRS attribute definition of ‘complete’ (by Farbey 1990): ‘to exhaust
all known needs and objectives’ and scenario attribute ‘complete’ (by UCCS

1997).

» 2.3 further explanation: All actors’ (both human and computer) interactions with

the future system are modeled as appropriate (see the definition of appropriate on
page 67).

2.4 tolerance for exclusion. HIGH. Scenario sets need to be tolerant of
temporary incompleteness especially at the top of the requirements funnel. This
allows scenario designers to model what they know while leaving unknown areas
marked ‘TBD’ to be filled in by the team at a later date. A set of scenarios will
not need to be complete until the bottom of the requirements funnel.

2.5 justification for inclusion: It is important to have a complete set of scenarios
to make sure requirements are covered, to help eliminate assumptions made about
missing information, and to bring tacit knowledge into the open.

2.6 Example (domain — Automated Teller Machine [ATM]):

Attribute not present Attribute present

EXAMPLE: EXAMPLE:

A set of scenarios for an ATM | A set of scenarios for an ATM
machine models users desiring | machine models all possible

a withdrawal and depositing user interactions with the
money, but does not model system including a user
what happens when a user checking his/her balance.

wants to check their balance.

2.7 applicable to: M set of scenarios C’ single scenario

51

3. Concise

/7
o

O/
0‘0

X3

%

L (4

3.1 attribute definition: KISS: Keep It Short and Simple

3.2 origin: SRS attribute ‘concise’ (by A. Davis and Overmyer et al. 1993):
‘SRS is short as possible without affecting any other quality of the SRS’; and
scenario attribute ‘short’ (by Nardi 1995).

3.3 further explanation: Scenario steps that are long and complex may be
difficult to follow or understand exactly what the step is accomplishing. Short,
simple scenarios that are to the point get the message of the scenario across to the
reader succinctly.

3.4 tolerance for exclusion. LOW. Where one is located in the requirements
funnel does not have an effect on keeping the scenario concise. Scenarios should
be concise from the beginning.

3.5 justification for inclusion: Scenarios are very user oriented. It is important to
keep the stakeholders involved and not bored or buried in too much detail so that

the stakeholders maintain interest.

% 3.6 Example (domain — Automated Teller Machine [ATM]):

Attribute not present Attribute present
EXAMPLE: EXAMPLE:
e Prompting the user, the system ¢ System prompts user to
requests the user insert their ATM insert ATM card
card into the ATM card reader User inserts ATM card

e User inserts ATM card that was
issued by customer’s bank and
includes magnetic strip encoding PIN
and card number and a card number
in raised letters on top of card

e Prompting the user, the system
requests the user enter their PIN

e User uses keyboard located below the
monitor to enter 4 digit Personal
Identification Number

e After receiving the last digit, the
system performs PIN verification

e Main menu of options is displayed on
the screen by the system

e ‘withdrawal’ button is pressed by the
user

e Prompting the user, the system
requests the user to enter their
amount they want to withdraw

e User enters amount of money he/she
wants to withdraw by using
keyboard located below monitor

e System verifies funds by sending
electronic message to customer’s
bank’s computer where the
customer’s bank’s computer checks
that the customer’s account has the
desired withdrawal amount and sends
and electronic message to the ATM
machine that the customer has
enough money to cover the
withdrawal

e Dispersing cash, the system outputs
the withdrawal amount desired by the
user

¢ System prompts user to
enter PIN

e System verifies PIN
System displays main
menu of options

o User presses ‘withdrawal’
button

e System prompts user to
enter amount

e User enters amount
System verifies funds

e System disperses cash

52

53

EXPLANATION: EXPLANATION:

This scenario for an ATM program is not | This scenario captures the
concise, the steps are not as short as system and customer
possible.

interactions concisely.

% 3.7 applicable to: D set of scenarios M single scenario

4. Discrete

\/
0.0

/
L4

o

K/

/
o0

9
L %4

4.1 attribute definition: Scenario accomplishes a single goal or transaction.

4.2 origin: SRS attribute ‘concise’ (by A. Davis and Overmyer et al. 1993):
‘SRS is short as possible without affecting any other quality of the SRS’; and
scenario attribute ‘short’ (by Nardi 1995).

4.3 further explanation: At times, users of a system may accomplish 2 or more
goals or transactions consecutively when interacting with a system. Each of these
individual goals or transactions should have its own scenario.

4.4 tolerance for exclusion. LOW. Where one is located in the requirements
funnel does not have an effect on keeping the scenario discrete. Scenarios should
be discrete from the beginning.

4.5 justification for inclusion: Scenarios that accomplish more than one goal or
transaction may become long and unmanageable and may result in ‘losing the

user’ from too much information or boredom.

% 4.6 Example (domain — Automated Teller Machine [ATM]):

System prompts user to
enter PIN

System verifies PIN
System displays main
menu of options

User presses ‘withdrawal’
button

System prompts user to
enter amount

User enters amount
System verifies funds
System disperses cash
System prompts user
asking if they want another
transaction

User presses ‘yes’ button
System displays main
menu of options

User presses ‘deposit’
button

System prompts user to
enter amount

User enters amount
System prompts user to
enter deposit through
deposit slot

User inserts deposit
System prompts user
asking if they want another
transaction

User presses ‘no’ button

Attribute not present Attribute present
EXAMPLE: EXAMPLE:
e System prompts user to Name: Normal cash withdrawal with
insert ATM card second transaction desired
e User inserts ATM card e System prompts user to insert ATM

card

User inserts ATM card

System prompts user to enter PIN
System verifies PIN

System displays main menu of
options

User presses ‘withdrawal’ button
System prompts user to enter
amount

User enters amount

System verifies funds

System disperses cash

System prompts user asking if they
want another transaction

User presses ‘yes’ button

Name: transaction completed, user
desires to make a deposit

Initial Conditions[page 77]: User has
successfully completed a transaction
and user has pressed ‘yes’ button for
another transaction

System displays main menu of
options

User presses ‘deposit’ button
System prompts user to enter
amount

User enters amount

System prompts user to enter
deposit through deposit slot
User inserts deposit

System prompts user asking if they
want another transaction

User presses ‘no’ button

54

R/
0.0

55

EXPLANATION: EXPLANATION:
This scenario for an ATM The long scenario is broken into 2
program is not discrete and can | logical scenarios. Each scenario is
be logically broken into two discrete and accomplishes a single
separate scenarios (one for the | goal. The first scenario shows how to
withdrawal and one for the withdraw cash and still desire second
deposit) . transaction and the second scenario

shows how to deposit money after

already completing a transaction.

4.7 applicable to: D set of scenarios single scenario

5. Single Scenario Consistency

7
0.0

9,
0.0

0,
L X4

5.1 attribute definition: The scenario does not have any contradictions within the
scenario itself.

5.2 origin: SRS attribute ‘internally consistent’ (by A. Davis and Overmyer et
al. 1993): ‘no subset of individual requirements stated therein conflict’ and
scenario attribute ‘consistent’ (by Hsia et al. 1994 and UCCS 1997).

5.3 further explanation: Within the scenario itself there are no contradictions or
inconsistencies such as in the example below. Is the alert button a push button or
something to be turned?

5.4 tolerance for exclusion. LOW. There is no reason why a scenario should be
inconsistent from the beginning.

5.5 justification for inclusion: Scenarios that are inconsistent can lead to multiple
interpretations that may lead to a system built that satisfies inconsistent

requirements.

O

56

% 5.6 Example (domain — Alert System):

Attribute not present Attribute present
EXAMPLE: EXAMPLE:
o User presses the alert e User presses the alert
button (to ‘on’ state) button (to ‘on’ state)
e The system’s status bar e The system’s status bar
turns red turns red
e User turns the alert button | e User presses the alert
off button (to ‘off” state)
EXPLANATION: EXPLANATION:
This scenario segment is This scenario segment is not
inconsistent because the first inconsistent because both
bullet entails the alert button is | times the alert button is
pressed and the last bullet mentioned, it is pressed.
describes the alert button as
being a turn button.

< 5.7 applicable to: D set of scenarios |X| single scenario

6. Scenario Set Consistency
% 6.1 attribute definition: There is no contradiction among the set of scenarios.
% 6.2 origin: SRS attribute ‘internally consistent’ (by A. Davis and Overmyer et al.
1993): ‘no subset of individual requirements stated therein conflict’ and scenario
attribute ‘consistent’ (by Hsia et al. 1994 and UCCS 1997).
% 6.3 further explanation: This attribute implies that the same sequence of steps or
inputs (assuming identical initial conditions - see page 77 for definition of initial
conditions) cannot generate two different, contradictory outputs in 2 or more

scenarios.

57

% 6.4 tolerance for exclusion. MEDIUM. There may be times when a designer
wants to show the user different output alternatives for a sequence of inputs and
therefore may have inconsistent scenarios. However, a finalized set of scenarios
(with the desired alternative already chosen) should not have inconsistent

scenarios.

K/
**

6.5 justification for inclusion: One does not want inconsistent requirements.
They may lead to an ambiguous or non-verifiable SRS.

% 6.6 Example (domain — Missile Launch System):

This is an example of 2 inconsistent scenarios. This example
shows two different scenarios with the same initial conditions
and inputs, but drastically different outputs. The scenario on the
right is probably the more correct scenario

EXAMPLE:

Initial Conditions[page 77]:

System is in launch mode

e Missile Operator presses
launch button

e Missile Operator presses
cancel button within 30
seconds of pressing red
button

e Miissile is launched

EXAMPLE:

Initial Conditions[page 77]:

System is in launch mode

e Missile Operator presses
launch button

e Missile Operator presses
cancel button within 30
seconds of pressing red
button
Launch is aborted

e System returns to normal
state

EXPLANATION:

The inputs to this scenario are:
user presses red button, user
presses cancel button within 30
seconds of pressing red button.
The output is: the missile is
launched.

EXPLANATION:

The inputs to this scenario are:
user presses red button, user
presses cancel button within 30
seconds of pressing red button.
The output is: the launch is
aborted.

% 6.7 applicable to: m set of scenarios D single scenario

58

7. Timing Constraints Modeled

@,

0.0

/7
°oe

o
%

K/
¢

*°0

7.1 attribute definition: Scenarios model timing constraints between stimuli and
responses, showing maximum or minimum time from when a stimulus or
response is received or sent by the system to when another response or stimulus
occurs.

7.2 origin: scenario attribute ‘timing behavior modeled’ (by Kramer and Keng
1988 and Neilsen 1995) and SRS attribute ‘performance constraints captured’ (by
Farbey 1990 and Roman 1985).

7.3 further explanation: Users should be able to get a feel for the timing
constraints via the scenario and be able to change the values of the constraints.
There should exist the ability to turn on or off the timing constraint modeling
capability.

7.4 tolerance for exclusion: LOW to HIGH. LOW: For real time systems, the
timing is crucial and is one of the first features of the system to be described.
HIGH: For other systems, most time and energy at the beginning of elicitation 1s
spent on capturing ideas and concepts. Timing behavior is normally not included
until the ideas are refined (towards the narrow end of the funnel) although they
can be included at any point.

7.5 justification for inclusion: One of the hardest and often most overlooked areas
of requirements are non-functional requirements (including timing constraints).
By explicitly modeling timing constraints in scenarios they are more likely to be
incorporated into the SRS. By letting the users get a feel for what the constraints

are (e.g. how ‘painful’ is it to wait 5 minutes for an elevator?), the more likely

59

they are to find the right constraints the users can live with. In addition,
discussions of tradeoffs among different constraints can be prompted (i.e. tighter
constraints may mean additional hardware and more money, or tightening one
constraint means loosening another, etc.). Also, being able to turn off or on the
constraint modeling ability allows for the scenario to be presented with the
constraints shown (which may make the presentation longer) or, once an initial
presentation has been given, to be presented without modeling the constraints.
This can help speed up the process when one is looking at a scenario and is
focusing on some aspect other than the constraints.

% 7.6 Example (domain — Automated Teller Machine [ATM]):

Attribute not present Attribute present
EXAMPLE: EXAMPLE:
e User enters amount to e User enters amount to
withdraw withdraw
e System disperses cash e System disperses cash
requested requested (within 10

seconds of amount to be
withdrawn entered by user)

EXPLANATION: EXPLANATION:

This portion of an ATM This portion of an ATM
scenario does not include scenario does include timing
timing constraints. The user constraints. It is clear that the
may have to wait until the next | user should not have to wait
day to receive his/her funds. more than 10 seconds to

receive his/her cash.

s 7.7 applicable to: |:| set of scenarios [single scenario

60

8. Right Level of Abstraction / Detail

/
0.0

*,

8.1 attribute definition: A scenario is detailed enough to be meaningful and
demonstrate exceptional cases, yet is abstract enough to avoid generating too
many scenarios.

8.2 origin: SRS attribute ‘at right level of abstraction/detail’ (by A. Davis and
Overmyer et al. 1993) and scenario attributes ‘ambiguous’ and ‘concrete’ (by
Erickson 1995; Potts, Takahashi, Anton 1994; Carroll 1995; Kyng 1995; Rosson
and Carroll 1995).

8.3 further explanation: There is no consensus on the right level of detail for a
scenario (Rosson and Carroll 1995), it is difficult to know when enough detail has
been reached. The right level of abstraction or detail is not only very subjective,
but also depends on where in the requirements funnel you are. In the beginning or
top of the funnel, it is okay and often desirable to have more abstract or
ambiguous scenarios because during this time you are trying to get a higher level
understanding of what the users want in their system and do not have a lot of
domain knowledge. Rough or ambiguous scenarios leave gaps that open up
discussion and allow users to tell the designers what they want to happen to fill
those gaps. After gaining knowledge into the overall system, it is important to
make the scenarios more concrete or detailed in order to flush out the
requirements and avoid assumptions. The right level of detail is very domain
dependent. Relying on domain expertise to guide the level of detail is important.
For example, scenarios could be at the high level ‘class of input’ level or at the

very detailed level of having a different scenario for every specific input possible.

61

The latter could yield an enormous amount of scenarios (just think of a calculator
program as an example).

8.4 tolerance for exclusion: MEDIUM. It may be difficult at first to find the right
level of detail. But, a few tries at creating scenarios along with domain expert
guidance should soon guide the proper level of detail.

8.5 justification for inclusion: If the scenarios are too detailed then it is easy to
get lost in the overflow of information, yet if they are too abstract then the
scenarios may not be meaningful enough. If one enumerates every specific
possible input as a scenario, then there may be too many scenarios to deal with,
yet if too few are enumerated then not enough exceptional cases may be captured,

leaving the scenarios incomplete and ambiguous.

% 8.6 Example (domain — network messaging system)

Right level of abstraction for
upper requirements funnel (not
appropriate for lower funnel)

Right level of detail for lower
requirements funnel (may not
be appropriate for upper
funnel)

EXAMPLE:

e User gains access to the
system

e User enters command to
stop outgoing messages

e System stops sending
outgoing messages

EXAMPLE:

e System displays login
prompt

e User types in login name
and password correctly

e System displays main
menu with options: start
outgoing update messages,
view outgoing update
messages and stop
outgoing update messages

e User selects ‘stop outgoing
update messages’

e System prompts with an
OK button ‘are you sure?’

e User touches OK

e System stops sending
outgoing update messages

EXPLANATION:

This scenario does not explain
how the user gains access to
the system, or how he/she
stops outgoing messages. This
scenario only captures the
higher level sequence of
actions for stopping outgoing
messages (which is all that
may be known at the upper
portion of the requirements
funnel)

EXPLANATION:

This scenario explains how the
user gains access to the system
and how to stop outgoing
messages. It is less ambiguous
than the previous example.

* 8.7 applicable to: [] set of scenarios [single scenario

62

63

9, Understandable

7
0'0

(/7
°

L X4

L >4

9.1 attribute definition: The scenario should be easy to comprehend by all
stakeholders involved in the requirements elicitation process.

9.2 origin: SRS attribute ‘readable’ (by Farbey 1990) and scenario attribute
‘understandable’ by (Chin, Rosson and Carroll 1997 and Karat 1995).

9.3 further explanation: As mentioned in chapter 2, stakeholders are all of those
who have a stake in the change being considered, those who stand to gain and
stand to lose (Macaulay 1993). While it is probably not feasible for all possible
stakeholders to be involved in the requirements elicitation process, the scenarios
should be understandable by all the stakeholders that are involved. This means
that if all the stakeholders are engineers and scientists familiar with diagrams and
grammars, a formal scenario method, understandable by all participants, may be
appropriate. However, if all or most stakeholders are not familiar with formal
notation then an informal representation (such as text or storyboarding) may be
appropriate. Nearly everyone can understand text or storyboards, but not
everyone can understand or are comfortable with a formal representation.
Therefore, when in doubt, it is better to go with an informal method.

9.4 tolerance for exclusion: LOW. If stakeholders cannot understand the
scenario from the beginning then it will not be very effective.

9.5 justification for inclusion: The idea behind scenarios is to get users involved
with the elicitation process. Users need to feel comfortable with understanding
and manipulating what they see. If they cannot comprehend the scenario they will

be less likely to make changes or agree with what they see since most time will be

64

spent trying to understand the scenario. In addition, there is an intimidation
factor. Stakeholders may feel intimidated by notation they are unfamiliar with
(even after the notation has been explained to them). They may feel they are not
smart enough to understand or even participate, resulting in lost ideas from that
stakeholder. The idea is to make the stakeholders feel as comfortable as possible
so that they participate with their ideas.

% 9.6 Example (domain — telephone system)

Attribute not present Attribute present

EXAMPLE: EXAMPLE:

Gy=(NT, S,R, A) Initial Conditions[page 77]:
Callee is on the phone

S = {Off H. Not9, d, R, Cpu, talk, | Name: Caller attempts to call

Chup, On_H} someone who is already on the
phone

NT= {Caller, <FD>, <Int>, e Caller takes the phone off the

<Third>, <Fourth>, <Action>, hook

<Talk>, <Fin>} e Caller hears dial tone from

phone
A= Caller e Caller enters a digit other

than 9 for an internal call
Caller enters 3 more digits
System verifies phone
number is valid

e Caller is given a busy signal

e (Caller puts phone on the
hook

R= {Caller -> Off H <DialTone>, |,
<DialTone> -> Not9<InternalCall>, | ,
<Int> -> digit<Third> | On-H
<Third> -> digit<Fourth> | On-H,
<Fourth> -> digit<Validating> |
On-H,

<Validating> ->Ring<Connecting>
| On_H | Busy<TryAgain> |
<disconnected>

(example taken from Hsia et al.
1994)

EXPLANATION: EXPLANATION:

For stakeholders that are not For stakeholders that are not

familiar with formal grammars, this
scenario may be intimidating.

familiar with formal grammars,
they may be more comfortable
with this format of a scenario.

65

s 9.7 applicable to: D set of scenarios |X| single scenario

Quality Attributes of an SRS not Previously Mentioned for Scenarios, but do Apply to

Scenarios

There are several attributes of a quality SRS that are not common with those mentioned

by authors to be important for a scenario (represented by quadrant 2 in Figure 21). Yet, upon

examining them, some seem important and applicable to scenarios. Those attributes are:

achievable, appropriate, predictable/testable/verifiable, usable after implementation,

traceable, and traced. From these attributes, I propose the following attributes for a quality

scenario:

Figure 21 SRS Attributes not Common with Current Thinking on Scenario Attributes

SRS Not included in
Current current thinking
mﬂ on what makes
t makes a a quality SRS
quality SRS qually
Current
thinking on
what makes a
- quality scenario
'®) 1
% Not included in
8 current thinking
on what makes —»
a quality

scenario

66

10. Achievable
% 10.1 attribute definition: There exists at least one system design and

implementation that correctly implements the scenario.

7
0‘0

10.2 origin: SRS attribute ‘achievable’ (by A. Davis and Overmyer et al. 1993):
‘there could exist at least one system design and implementation that correctly

implements all the requirements stated in the SRS’.

X3

%

10.3 further explanation: N/A

% 10.4 tolerance for exclusion: LOW to HIGH. LOW: Designers do not want to
build up users’ expectations of a feature or a scenario to later tell them the system
cannot be built as shown. HIGH (if brainstorming): In the very beginning of
requirements elicitation, users may not know what they want from their future
system. Brainstorming ideas and scenarios may help users and designers decide
on which features they want. However, all brainstormed ideas may not be
achievable and this is okay at the very, very top of the requirements funnel until
stakeholders decide on the features they want. After a feature is decided on
(simulating a move down the funnel), the feature needs to be achievable.

% 10.5 justification for inclusion: It is important not to build up users’ expectations

for something that is infeasible to build (for either technology or scope reasons).

% 10.6 Example (domain — Automated Teller Machine [ATM]):

Attribute not present Attribute present
EXAMPLE: EXAMPLE:
e System displays prompt for | ¢ System prompts user for
PIN PIN
e Customer enters PIN e Customer enters PIN
System verifies PIN o System verifies PIN

System displays main
menu options

o Customer presses account
balance button

e Customer is shown account
balance, last 10
transactions on account and
minimum balance needed
for that account

e System displays main
menu options

e Customer presses account
balance button

e Customer is shown account
balance

EXPLANATION:

The project (ATM system) has
a limited amount of bandwidth
for transferring information
over the line. There is not
enough bandwidth available to
get the customer’s last 10
transactions and minimum
balance (only current balance).

EXPLANATION:

The project (ATM system) has
a limited amount of bandwidth
for transferring information
over the line. There is not
enough bandwidth available to
get the customer’s last 10
transactions and minimum
balance (only current balance).

67

< 10.7 applicable to: ‘:' set of scenarios E single scenario

11. Appropriate
% 11.1 attribute definition: The scenario only captures the concepts, ideas and
interactions that are germane to the future system and the environment it will be
deployed in.
% 11.2 origin: SRS attribute ‘appropriateness’ (by Roman 1985): ‘SRS captures,

in a manner that is straightforward and free of implementation considerations,

/7
L4

R/
L4

68

those concepts that are germane to the system’s role in the environment for which
it is intended.’

11.3 further explanation: N/A

11.4 tolerance for exclusion. MEDIUM. At the very top of the funnel it may be
difficult to know what is appropriate until the scope of the project is further
refined. However, keeping focused on the pertinent aspects of the system is
important in order to avoid going down the wrong path.

11.5 justification for inclusion: Keeping focused is important, otherwise it is easy
to become bogged down in information overflow with parts of scenarios that do
not affect the future system requirements or the environment it will be operating

in. This attribute helps scope the scenarios.

% 11.6 Example (domain — Automated Teller Machine [ATM]):

Attribute not present

Attribute present

Example:

Customer drives up in car
Customer parks car
Customer exits car
Customer locks car
System prompts customer
to insert ATM card
e Customer inserts ATM
card
e System displays prompt for
PIN
Customer enters PIN
e System verifies PIN
System prompts displays
main menu of options

Example:

e System prompts customer
to insert ATM card

e Customer inserts ATM
card

e System displays prompt for
PIN
Customer enters PIN

e System verifies PIN

o System displays main
menu of options

e Customer presses
‘withdrawal’ button

e System prompts user for
amount

e Customer presses e (Customer enters amount
‘withdrawal’ button e System verifies funds

e System prompts user for e System disperses cash
amount e Customer removes cash

e Customer enters amount ¢ System outputs customer’s

e System verifies funds card

e System disperses cash e Customer removes card

e Customer removes cash

e System outputs customer’s
card

e Customer removes card

o Customer unlocks car

o Customer starts car

o Customer drives away

EXPLANATION: EXPLANATION:

When modeling a future ATM
system, unneeded information
is captured (such as the
customer driving up and
locking their car, etc. - as
shown in italics)

When modeling a future ATM
system, only germane
information is captured.

% 11.7 applicable to: D set of scenarios single scenario

69

70

12. Usable after SRS Written {testable / verifiable}

O/
L X4

(/7
L4

R/
4

12.1 attribute definition: If desired, the scenario could be used after the SRS is
written as a test case and to drive design.

12.2 origin: SRS attribute ‘useable after implementation’ (by Farbey 1990).
12.3 further explanation: The scenario must be presented/written in such a way
that the system, once built, can be tested that it performs as the scenario dictates.
In addition, the scenario can be used to drive design (see page 12 for a discussion
of use cases in design).

12.4 tolerance for exclusion. HIGH. Scenarios can accomplish the goal of
requirements elicitation without being reusable in later parts of the software
lifecycle. This is especially true at the top of the requirements funnel.

12.5 justification for inclusion: Validated (see page 79 for definition of validated)
scenarios are the agreed way the users want the system to behave. Therefore, to
ensure the final product behaves as the user expects, it can be tested that it

behaves like the validated scenarios.

% 12.6 Example (domain — system using a button to show ‘status’)

Attribute not present

Attribute present

EXAMPLE:

e User presses ‘on’ button
e Button turns red and green

EXAMPLE:

Initial Conditions[page 77]:

‘on’ button is white

e User presses ‘on’ button

e Button turns red within one
second of being pressed
System warms up

e Within 5 seconds of button
turning red, button turns
green

EXPLANATION:

This portion of a scenario does
not explain how the changing

from red to green occurs. Does
it flash red and green? Does it
stay red for hours and then turn

EXPLANATION:

This portion of a scenario
explains when the button will
turn from red to green. What
the design of the system should
accomplish is clear. A tester

71

green at the last second? It is
not clear how to test this that it turns red within limits
scenario. In addition, it is and then turns green within
unclear how to design the limits.

system to accomplish this
scenario.

can press the ‘on’ button, test

% 12.7 applicable to: |:, set of scenarios single scenario

13. Named {Traceable}
% 13.1 attribute definition: Each scenario should be easily identifiable or
referenced.
% 13.2 origin: SRS attribute ‘traceable’ (by A. Davis and Overmyer et al. 1993):
‘SRS is written in a manner that facilitates the referencing of each individual

requirement.’

s 13.3 further explanation: N/A

72

% 13.4 tolerance for exclusion. LOW. When a scenario is first created it should be

% 13.6 Example (domain — a system with a specific shut down sequence)

named. It does not matter where in the requirements funnel one is.
13.5 justification for inclusion: Some scenarios may be common, or sub-
scenarios, to many scenarios, or one scenario may have to occur before another,

or one scenario may be an exceptional case to another scenario, etc. In each of

these cases there is the need to reference another scenario. Instead of describing

the entire scenario again, the scenario’s name can be given. The name of the
scenario should reflect what the scenario is accomplishing to give readers a

feeling for what it is about. In addition, when the SRS is written, it may be

desirable to reference which scenario a requirement is satisfying.

Attribute not present

Attribute present

EXAMPLE:

User presses ‘off” button
System prompts user with
an OK button asking if
they are sure they want to
shut the system down

e User touches OK button
System shuts down

EXAMPLE:

NAME: Successful system
shut down ‘

e User presses ‘off” button
e System prompts user with
an OK button asking if

they are sure they want to
shut the system down
e User touches OK button
e System shuts down

EXPLANATION:

This scenario does not have a
name and cannot be
referenced.

EXPLANATION:

This scenario is named and can
be referenced.

s 13.7 applicable to: D set of scenarios single scenario

.

73

14, Traced

0,
0.0

/7
L4

%

%

R/
L X4

14.1 attribute definition: Attached to each scenario is any or all of the following
information as appropriate: creator, participating stakeholders, date presented,
change history, relationships with other scenarios (including scenarios that can be
ran in parallel), rationale for scenario, criticality of the scenario, origin from
requirements, and issues.

14.2 origin: SRS attribute ‘traced’ (by A. Davis and Overmyer et al. 1993):
‘Origin of the requirements is clear’.

14.3 further explanation: N/A

14.4 tolerance for exclusion: LOW. From the beginning it should be recorded
who created the scenario, why it changed, rationale behind the scenario, etc. This
does not depend on where in the requirements funnel one is.

14.5 justification for inclusion: One attribute of a quality SRS is for the origin of
the requirements to be clear (A. Davis and Overmyer et al. 1993). Since
scenarios elicit requirements, it is important to know how the scenarios came to
be: who created it, which stakeholders validated it, rationale behind any changes
made, etc. Also, to create a scenario, there must exist at least a very high level
requirement that the scenario is depicting. That requirement needs to be recorded.

When any questions arise about a traced scenario, the answers can be looked up.

% 14.6 Example (domain — a system with a specific start-up sequence)

74

Attribute not present

Attribute present

EXAMPLE:

Name: Successful system

start-up

e User plugs system in

e User presses ‘start’ button

e System displays opening
menu within 2 minutes of
start button being pressed
User selects ‘start system’
Main user menu is
displayed and system is
operational

EXAMPLE:

Background information:
Creator: Kim Braun

Participating stakeholders: Ann Zweig,
Melinda Mello, J.D. Burton

Date Presented: Aug 16, 1997

Change History: Aug 1 1997: instead of
going to main menu on start up, Ann
suggested an opening menu before the main
menu with options: start system, perform
maintenance, and perform diagnostics

Relationship with other scenarios: ‘perform
diagnostics’ and ‘perform maintenance’
scenarios show other options of what can
occur when ‘start system’ is not selected
from opening menu

Rationale for scenario: show how system is
turned on

Criticality: HIGH
Scenario Requirement: Requirement 3.4

Other issues: Melinda might like to use a
key instead of the start button to start the
system

Name: Successful system start-up

e User plugs system in

e User presses ‘start’ button

e System displays opening menu within 2
minutes of start button being pressed
User selects ‘start system’

e Main user menu is displayed and system
is operational

EXPLANATION:

There is no record of
information with the scenario.

EXPLANATION:

The scenario has a full record of
information attached with it to record its
history.

% 14.7 applicable to: D set of scenarios single scenario

Current Quality Attributes of Scenarios not Common with Attributes of a Good SRS

There are some attributes that authors feel are important for good scenarios that are

not common with attributes of an SRS (represented by quadrant 3 as highlighted in Figure

75

22). These include: closed/no external references, reflect reality and solve the right problem,

fun, vivid, maintain data quality, validated, initial conditions described, and single threaded.

I will describe why I believe only three additional attributes should be added to the list from

those mentioned above.

Figure 22 Current Scenario Attributes not Common with SRS Attributes

SRS Not included in
Current current thinking
mﬂ on what makes
t makes a a quality SRS
quality SRS
Current
thinking on
what makes a
8 quality scenario
% 1
% | Notincludedin
8 current thinking 2 4
on what makes —»
a quality
scenario

CLOSED: Kyng’s belief is that scenarios should have no external references.
However, this may be too restrictive to apply to all scenarios. I prefer the previously
mentioned attribute ‘appropriate’ (page 67) that states scenarios should only model those
aspects that are germane to the future system and the environment it will be operating in.

REFLECT REALITY: The attribute ‘appropriate’ covers the need to reflect reality
and solve the right problem. ‘Appropriate’ reminds us to only model the appropriate or
realistic interactions that affect the future system.

FUN: To require all scenarios to be fun may mean they do not reflect reality or are
appropriate. When possible, it is a good idea to make scenarios fun since fun scenarios are

engaging and hold stakeholders’ interests, but it should not be mandated as an attribute.

76

77

VIVID: Vivid is a hard term to define in terms of scenarios. It brings to mind such
words as detailed, specific, reflect reality, etc. These are terms already covered in the
attribute list so far.

MAINTAINING DATA QUALITY: Maintaining data quality is important for
scenarios. It means to ensure the data (such as inputs and outputs) are correct. This falls
under the attribute ‘validated’ as described on page 79.

Describing initial conditions sets up the environment and setting that the scenario
needs in order to succeed. It is an important attribute to add to the list along with the

attributes ‘validated’ and ‘single threaded’.

15. Initial Conditions Described
% 15.1 attribute definition: A description of what the environment and / or system
is like prior to the scenario.
% 15.2 origin: scenario attribute ‘initial conditions’ (by UCCS 1997).

% 15.3 further explanation: An initial condition could be a state that the system is
in such as: normal, idle, busy, computing, degraded, etc. (each state would be
described at some point). It could be a description of the environment such as
‘car has pulled up to the stoplight’. It could even be which scenario had to finish
prior to this scenario beginning. Initial conditions could be any combination of
the above. If a scenario must have some type of initial conditions met to succeed,
they need to be listed.

% 15.4 tolerance for exclusion: LOW. Initial conditions should be known at time

of scenario creation and updated as necessary.

78

% 15.5 justification for inclusion: It is important to understand that certain
conditions must be in place for a scenario to succeed so that stakeholders get a
feel for how the scenario fits into the big picture. Also, for testing, testers need to
understand that a scenario may fail (and rightly so) if initial conditions are not
met.

% 15.6 Example (domain — missile launch system)

Attribute not present Attribute present
EXAMPLE: EXAMPLE:
Name: Missile Launch Name: Missile Launch
e Missile operator turns Initial Conditions:
launch keys e System is in launch mode
e Missile operator presses e The ‘operators successfully
launch button enter launch code ’
e Missile is launched scenario complete
e Launch hatch open
Scenario:

e Missile operator turns
launch keys

e Missile operator presses
launch button

e Missile is launched

EXPLANATION: EXPLANATION:

No initial conditions. This With initial conditions
scenario implies that all that is | describing state of the system,
needed to launch a missile is to | which scenario had to

turn the keys and press the complete before this scenario,
button at any time and under and a description of the
any conditions. environment

% 15.7 applicable to: ‘:' set of scenarios single scenario

79

16. Validated

7
0'0

X/
o?

L X4

16.1 attribute definition: Stakeholders verify the scenario correctly models their
beliefs of how the future system should behave and that the data used in the
scenario is correct. In addition, designers verify that it meets their quality
attribute goals (i.e. is the scenario feasible to implement?, does it contradict
another scenario?).

16.2 origin: scenario attribute ‘validated’ (by Hsia et al. 1994).

16.3 further explanation: A scenario cannot be completely validated until it is
presented to the user. When designers create a scenario, stakeholders should
validate that the scenario is correct. When a stakeholder creates or modifies a
scenario, the designer must validate it. There is a subtle relationship between a
‘valid’ scenario and a ‘validated’ scenario. A validated scenario has the ‘stamp of
approval’ from a stakeholder that it is valid. A valid scenario is a scenario that is
correct (it correctly models stakeholders beliefs of how the future system should
behave and the data is correct). It is unknown for sure if a scenario is valid until it
is validated. A scenario, prior to being validated by the stakeholders, may already
be valid or correct. Also, a scenario, prior to being validated by the stakeholders
may be invalid and modified to be valid after presented to the stakeholders. See
examples below for scenarios valid prior to presented to stakeholders and invalid
prior to presented to stakeholders.

16.4 tolerance for exclusion. MEDIUM. A scenario cannot be validated until

presented to the stakeholders. This means the scenario cannot be validated at

0/
L X4

80

creation. However, to help ensure the requirements team is on the right path, the
sooner the scenario is validated the better.

16.5 justification for inclusion: A goal of an SRS, the eventual end product of
scenarios, is to be correct. One does not want to build a system that is not correct
because it will not meet the stakeholders needs. Validated scenarios help ensure

correctness.

% 16.6 Examples (domain — Automated Teller Machine [ATM]):

Not valid prior to being Valid prior to being presented
presented to user to user
EXAMPLE: EXAMPLE:

e System displays main
menu

e Customer presses
‘withdrawal’ button

e System displays prompt
requesting PIN

e Customer enters PIN

o System verifies PIN

e System prompts user for
amount to withdraw

VALIDATION: Fail - PIN

e System displays prompt
requesting PIN

e Customer enters PIN

e System verifies PIN

e System displays main
menu

e Customer presses
‘withdrawal’ button

e System prompts customer
for amount to withdraw

VALIDATION: Pass —

should be entered before main | 8/21/97 by Jay Billups
menu is displayed

EXPLANATION: EXPLANATION:

This portion of an ATM This portion of an ATM

scenario does not correctly
model the stakeholders’ beliefs
on the sequence of events for a
user to withdraw money, PIN
should be entered earlier — this
scenario is not valid prior to
being presented to the user

scenario does correctly model
the stakeholders’ beliefs of the
sequence of events for a user
to withdraw money — this
scenario is valid prior to being
presented to the user

81

BOTH SCENARIOS BELOW ARE THE SAME (ONE VALIDATED, ONE IS NOT):

<

Attribute not present (yet
scenario is valid)

Attribute present

EXAMPLE:

e System displays prompt

EXAMPLE:

e System displays prompt

requesting PIN requesting PIN
Customer enters PIN Customer enters PIN
System verifies PIN e System verifies PIN
System displays main e System displays main
menu menu

e Customer presses ‘deposit’ | ¢ Customer presses ‘deposit’
button button

e System prompts customer | e System prompts customer
for amount for amount

e Customer enters amount

e Customer enters amount
VALIDATION: Pass —

8/21/97 by Jay Billups
EXPLANATION: EXPLANATION:
This portion of an ATM This portion of an ATM

scenario does correctly model
the stakeholders’ beliefs of the
sequence of events for a user
to deposit money — it happens
to be valid, but the validity is
unknown since it has not been

validated yet.

scenario does correctly model
the user’s beliefs of the
sequence of events for a user
to deposit money — it happens
to be valid which is verified
upon validation

82

% 16.7 applicable to: D set of scenarios m single scenario

17. Single Threaded
% 17.1 attribute definition: A scenario does not include any branches, condition
statements (other than initial conditions) such as if-then-else, but, instead, shows a

single path interaction with the system.

/7
o

7
‘0

L)

83

17.2 origin: Scenario {use case} attribute ‘single threaded’ (by Rumbaugh
1994).

17.3 further explanation: When a user is presented with a menu, or has several
options that they can take at a point in time, a scenario should model only one
possible option and outcome.

17.4 tolerance for exclusion: LOW. There is no benefit or reason to not have
scenarios be a single thread from the beginning.

17.5 justification for inclusion: If branches were included in a scenario, the

scenario may become very long, unmanageable and difficult to follow.

17.6 Example (domain — Automated Teller Machine [ATM]):

Attribute not present

Attribute present

EXAMPLE:

Initial Conditions: user has
entered ATM card and PIN
successfully

e System displays main
menu with options:
withdraw, deposit, check
balance

e [fcustomer presses the
‘deposit’ button then
system prompts user to
enter deposit amount

e After entering amount,
customer drops money in
deposit slot

o Else, if user presses the
‘withdraw’ button then
system prompts customer
to enter withdrawal amount

e Customer enters amount

e [fsystem can verify funds
then system gives
withdrawal amount to
customer

e [Llse, if system cannot
verify funds, then system
displays pop-up menu
stating funds cannot be
verified and returns card to
user

e [Else, if customer presses
‘balance’ button then
system prompts user for
checking or savings
balance

EXAMPLE:

Initial Conditions: user has entered
ATM card and PIN successfully

Name: Successful deposit of funds

e System displays main menu with
options: withdraw, deposit,
check balance

e Customer presses ‘deposit’
button

e System prompts user for deposit
amount

e Customer enters withdrawal
amount

e Customer enters deposit amount

e System prompts user to place
deposit in slot.

Initial Conditions: user has entered
ATM card and PIN successfully

Name: Successful withdrawal of
funds

e System displays main menu with
options: withdraw, deposit,
check balance

e Customer presses ‘withdraw’
button

e System prompts user for
withdrawal amount

e System verifies funds
System gives customer money

84

e [f customer chooses
‘savings’ then savings
balance is displayed,
otherwise if user chooses
‘checking’ then checking
balance is displayed

Initial Conditions: user has entered
ATM card and PIN successfully

Name: Unsuccessful withdrawal of
funds (funds cannot be verified)

e System displays main menu with
options: withdraw, deposit,
check balance

e Customer presses ‘withdraw’
button

e System prompts customer for
withdrawal amount

¢ Customer enters withdrawal
amount
System cannot verify funds

e System displays pop-up display
stating that funds cannot be
verified and cannot withdraw
money

Initial Conditions: user has entered
ATM card and PIN successfully

Name: Successful checking of
savings account balance

e System displays main menu with
options: withdraw, deposit,
check balance

e Customer presses ‘check
balance’ button

e System prompts customer for
‘checking’’ or ‘savings’ balance

e Customer selects ‘savings’
balance
System gets balance amount
System displays balance

EXPLANATION:

There are multiple branches
and ‘if-then’ conditions,
making this scenario very
confusing to follow.

EXPLANATION:

Each path through the system is
broken into its own scenario, making
each scenario easier to follow and
comprehend the goal being reached.

85

86

 17.7 applicable to: [] set of scenarios single scenario

Quality Scenario Attributes with no Origins

Several attributes, inspired or expanded upon from previous work, have been defined.
There are still more attributes that make up a quality scenario/scenario set that have not been
defined yet. These attributes represent quadrant 4 as highlighted in Figure 23. From the
literature search I conducted and from listening to experts in the field talk about scenarios
and their uses, I have realized that there are still some attributes missing. These attributes
include: modeling both normal and exceptional cases, simulating system failure and
recovery, using multiple forms of media as needed (not tied to one form of media), and

clearly showing the boundary between the system and the user.

87

Figure 23 New Attributes: Not Found in Current Thinking on Quality in a Scenario or

Quality in an SRS
SRS Not included in
Current current thinking
whaﬂmﬂmmak]gon on what makes
t makes a a quality SRS
quality SRS quatly
Current
thinking on
what makes a
- quality scenario
o 1 3
A | Notinchudedin 2 || 4
8 current thinking
on what makes —P
a quality
scenario

18. Model both Normal and Exceptional Cases
% 18.1 attribute definition: A set of scenarios should model both normal and

exceptional system interactions.

% 182 origin: new

< 18.3 further explanation. While it is important for scenarios to model normal
processes and interactions, it is equally important to capture the exceptional or
abnormal cases. For example, most user inputs have a range of legal values.
What happens if the user attempts to enter a value outside that range? There are

other cases that lie outside of user input such as an ATM machine not having

K/
L4

88

enough money to cover a withdrawal. The exceptional cases will depend on the
domain being modeled.

18.4 tolerance for exclusion: HIGH. When trying to determine the requirements
of a system, the first step should be to model the normal activities. After they are
understood, then the exceptional cases can be modeled (although they may pop up
even when discussing normal cases).

18.5 justification for inclusion: Understanding and agreeing upon what will
happen outside input boundary situations and other exceptional cases before
implementation decreases the likelihood of discrepancies between system
performance and stakeholder needs. By using scenarios to model these situations

bring these issues to the forefront for discussion.

% 18.6 Example (domain — Automated Teller Machine [ATM]):

Attribute not present

Attribute present

EXAMPLE:

e User prompted for amount
of withdrawal displaying
that the amount must be a
multiple of $20

e User enters a multiple
other than $20 (such as
$65)

e System displays a pop-up
menu with an ‘OK’ button
reminding them that
amount must be a multiple
of 20
User touches the ok button
User prompted for amount

of withdrawal
EXPLANATION: EXPLANATION:
The ATM machine being The ATM machine being

modeled only contains twenty-
dollar bills. When users want
to withdraw, they are directed
to only withdraw multiples of
$20. The set of scenarios does
not capture what happens
when the user requests
something other than a $20
multiple.

modeled only contains twenty-
dollar bills. When users want
to withdraw, they are directed
to only withdraw multiples of
$20. Included in the set of
scenarios is what happens
when a user enters a value
other than a multiple of $20.

 18.7 applicable to: [P set of scenarios [| single scenario

89

90

19. Simulate System Failures and Recoveries as Possible

<
0‘0

7
%

@,
L4

L X4

19.1 attribute definition: Known system failures (both internal to the system and
external with other entities the system depends on) and the recovery from the
failures should be modeled in a set of scenarios.

19.2 origin. new

19.3 further explanation: This is a tricky attribute because developers do not
deliberately build a system to fail, nor will they know all the ways the system will
crash until it is built. However, there are some possible scenarios that may cause
problems for a software system such as: database full, power failure, failure to
receive necessary messages from an independent system, and other possible
hardware failures. In addition, some software is built with the sole purpose of
watching hardware and detecting and recovering from hardware failures.
Software scenarios should exist showing what happens when hardware fails. This
attribute can depend greatly on the hardware suite chosen. Stakeholders do not
like to think of their new system failing, and it is possible that they may get scared
or lose confidence in the future system by talking about failures. However, if it
can be shown that there is a graceful recovery, this can be reassuring. This
attribute should be considered carefully and used subjectively and judiciously.
19.4 tolerance for exclusion: LOW to HIGH (application dependent). LOW:
Software systems that have the sole purpose of monitoring hardware (e.g.
software program to detect if any space shuttle hardware fails) should include this
attribute from the beginning. HIGH: For other programs, this attribute can wait

and be added as a refining step at the bottom of the requirements funnel.

K/
L X4

C/
%

91

19.5 justification for inclusion: System failure is nearly inevitable. The more
customers understand what will happen in different situations, the less likely they
will be shocked or surprised during testing and fielding of the system.

19.6 Example (domain — Air warning system)

Attribute not present Attribute present

EXAMPLE:

Initial Conditions:

e Receiving aircraft update
message on heading and
speed

Scenario:

e System stops receiving
aircraft update messages

e System sends request for
update message to radar
site after waiting 5 minutes
from last message

e After waiting 5 minutes for
response from radar site,
no response it given

e Radar site is marked as
degraded

e System dead reckons the
aircraft (estimates current
heading and speed after
last known location)

EXPLANATION: EXPLANATION:

An air warning system that Included in a set of scenarios
relies on receiving external for an air warning system is
aircraft messages to know the situation of not receiving

where each aircraft is located | the external aircraft messages.
does not include in its set of
scenarios what would occur if
the external system that
provides the aircraft messages

crashes.

K/
0‘0

92

19.7 applicable to: M set of scenarios |__—, single scenario

20. Multiple Forms of Media Used as Needed

0/
0‘0

0,
0‘0

\/
0‘0

K/
L X4

o
0.0

20.1 attribute definition: : A scenario should not be tied to one form of medium.
20.2 origin: new

20.3 further explanation: Scenario creators should use whatever media is
appropriate for the scenario and mix the different types of media as needed. In
the example below, the designers may have decided that a buzzer is the best way
to alert a customer that their card is available, but the stakeholders prefer a verbal
message. By sounding the buzzer, the stakeholders can tell the designers that they
do not want the buzzer and other options can be discussed. Also, a foam mockup
of the display or keyboard could supplement the scenario.

20.4 tolerance for exclusion. MEDIUM. At the top of the funnel the idea is to
capture ideas in whatever form is convenient. After the initial ideas are captured,
other forms of media need to be incorporated to flush out the scenario and
represent the scenario to a fuller capacity.

20.5 justification for inclusion: Not every aspect of a scenario can be shown
solely through text, a storyboard, etc. Using multiple forms of media (especially
sound) appeal to the different senses, giving stakeholders a fuller understanding
and comprehension of the scenario.

20.6 Example (domain — Automated Teller Machine [ATM]):

Attribute not present

Attribute present

EXAMPLE:

NAME: Transaction

completed

e Customer receives cash

e System prints out receipt

e Customer takes receipt

e System outputs ATM card
to customer

e The system alerts the
customer to take their card

EXAMPLE:

NAME: Transaction

completed

e Customer receives cash

e System prints out receipt

e Customer takes receipt

e System outputs ATM card
to customer

e A buzzer {sound buzzer}
alerts customer to take
their card

EXPLANATION:

The scenario does not show or
let stakeholders experience
how the system alerts the
customer to take their card

EXPLANATION:

The scenario describes the use
of a buzzer to alert the
customer along with the buzzer
sounding to let stakeholders
hear how the alerting will
happen

 20.7 applicable to: [] set of scenarios single scenario

21. Boundaries Between System and Users Shown Clearly

% 21.1 attribute definition: A scenario should distinctly show the boundary of

7
0.0

7
o

responsibilities between the system and the user.

21.2 origin: new

21.3 further explanation: There should be no confusion between the roles and
responsibilities of the user and of the future system. A phrase like ‘the card is

given’ in an ATM scenario does not say who or what is giving the card.

93

94

Stakeholders may assume differently who is performing which action. Instead,

the phrase should be ‘the user inserts the card’ or ‘ the system outputs the card’.

/7
**

21.4 tolerance for exclusion. MEDIUM. From the beginning, the distinction
should be made with respect to ‘who does what?’ In some cases this may not be
known right away and will be discovered further down the requirements funnel.
However, this should not be delayed too long, otherwise assumptions may be

made regarding boundaries.

e

%

21.5 justification for inclusion: It is better to get out in the open any assumptions
one may have about roles and boundaries of the system and the user. If
assumptions went untested until implementation and the assumptions were
incorrect, it will be more expensive to fix than if discovered earlier.

% 21.6 Example (domain — Cashier register system):

Attribute not present

Attribute present

EXAMPLE:

e Cashier enters amount of
last item into the register

e Cashier presses the ‘total’
button

e Total amount is displayed

to the cashier on the screen

EXAMPLE:

e Cashier enters amount of
last item into the register

e Cashier presses the ‘total’
button

e System calculates tax on
total amount

e Total amount (including
tax) is displayed to the
cashier on the screen

EXPLANATION:

Responsibility for calculating
tax is not clear (is it in the
total, or does the cashier have
to calculate?).

EXPLANATION:

Responsibility for calculating
tax is clearly shown to belong
to the system.

95

< 21.7 applicable to: [] set of scenarios [P single scenario

Uniqueness and Necessity of Five Similar Attributes: (concise, discrete, single threaded,
appropriate, and right level of detail)

Five of the attributes defined in this chapter are similar. They are: concise (page 51),
discrete (page 53), single threaded (page 82), appropriate (page 67) and right level of detail
(page 60). Their definitions have subtle differences that may be difficult to discern. To show
that each of these attributes is unique, distinct, and necessary for scenarios, I will provide five
examples of scenarios. Each example possesses four of the five above-mentioned attributes.
I will show that although four of the five attributes are present, the scenario is not of quality
and that including all five attributes will improve the scenario. These scenario examples are
not very long, therefore it may seem tolerable for an attribute to be missing in the example.
Nonetheless, the examples are representative of the problems that can occur from not
including an attribute.

By providing these examples I will show that the five similar attributes are indeed
different and necessary. Each attribute is necessary, because, without it, the scenario is not
of quality. Each attribute is different because there are no two examples that are alike. For
the purpose of the ‘level of detail” attribute, the examples will be written as if the project is

near the bottom of the requirements funnel.

96

EXAMPLE: Not concise

Name: Successful access to main menu

Initial conditions: System is in ready mode and displaying
welcome menu

e Afier the customer approaches the ATM the customer
enters their ATM card

e The customer sees a prompt that is displayed by the
system requesting the customer enter their PIN and it
takes no longer than 5 seconds for them to see the
prompt from when they enter their ATM card

e The customer, knowing their PIN, enters their PIN to
the system

e Verification of the customer’s PIN is done by the
system and it takes no longer than 10 seconds from
when the customer entered their PIN for the PIN to be
verified through electronic messages with the
customer’s home bank

e The customer sees the main menu of options displayed
by the system on the monitor no longer than 1 second
from when the customer’s PIN was verified

This scenario is discrete, appropriate, single threaded, and at the right level of detail
but it is not concise. This is not a quality scenario because the wording of the scenario is not
succinct and to the point. It is too wordy and the reader can be confused when trying to

decipher what each step is trying to convey.

EXAMPLE: Not Discrete

Initial conditions: System is in ready mode and displaying
welcome menu

Customer enters ATM card

Within 5 seconds, system prompts customer for PIN

Customer enters PIN

Within 10 seconds, system verifies PIN

Within 1 second, system displays main menu of options

Customer presses ‘withdrawal’ button

System prompts user to enter amount

User enters amount

System verifies funds

System disperses cash

System prompts user asking if they want another

transaction

User presses ‘yes’ button

System displays main menu of options

User presses ‘check balance’ button

System prompts user for ‘checking’ or ‘savings’

accounts

User presses ‘checking’ button

e System displays checking account balance

e System prompts user asking if they want another
transaction

e User presses ‘no’ button

This scenario is concise, appropriate, single threaded and at the right level of detail,
but it is not discrete. This is not a quality scenario because there is no singular goal it is

trying to accomplish, it is long and can result in ‘losing’ the user.

EXAMPLE: Not Appropriate

Name: Successful access to main menu

Initial conditions: System is in ready mode and displaying
welcome menu

Customer gets off at nearest bus stop

Customer pays bus driver

Customer walks to ATM

Customer enters ATM card

Within 5 seconds, system prompts customer for PIN
Customer enters PIN

Within 10 seconds, system verifies PIN

Within 1 second, system displays main menu of options

98

This scenario is concise, discrete, single threaded, and at the right level of detail, but

it is not appropriate. This is not a quality scenario because it is not focused on what is
germane to the system (how the customer gets to the ATM has no bearing on the future

system). It provides unneeded information and clouds the idea of what is important for the

future system.

99

EXAMPLE: Not Single-Threaded

Initial conditions: System is in ready mode and displaying
welcome menu

e Customer enters ATM card

e Ifcard is entered in proper direction then system
prompts user for PIN within 5 seconds of receiving
card
Customer enters PIN

e Ifsystem verifies PIN then system displays main menu
of options

e FElse, if system cannot verify PIN, then a pop-up menu
with ‘OK’ button displays error message and prompts
user for PIN

e Customer touches ‘OK’ button and enters PIN

e FElse, if card is not entered in proper direction then card
is returned and system displays message requesting
customer re-enter card

This scenario is discrete, appropriate, concise and at the right level of detail, but it is
not single-threaded. This is not a quality scenario because the ‘if-then-else’ branches in this

scenario makes it awkward and difficult to follow.

100

EXAMPLE: Not Right Level of Detail

Name: Successful access to main menu

Initial conditions: System is in ready mode and displaying
welcome menu

e (Customer sees PIN prompt
e Customer enters PIN
e Customer sees main menu

This scenario is concise, discrete, appropriate, and single-threaded, but is not at the
right level of detail. This is not a quality scenario because it does not contain enough detail.
For example, how does the user get to the point of seeing the prompt for their PIN from the
welcome menu? How long does it take to see the main menu? Is their ATM card involved?
There are too many unanswered questions for a scenario that should be at the bottom of the
requirements funnel, more detail is needed.

If any of the five attributes discussed in this section are missing, then the scenario is
degraded and does not reach its full potential for requirements elicitation. The following

scenario shows what a scenario with all five attributes looks like.

101

EXAMPLE: Concise, Discrete, Appropriate, Single-Threaded and at Right Level of Detail

Name: Successful access to main menu

Initial conditions: System is in ready mode and displaying
welcome menu

Customer enters ATM card

Within 5 seconds, system prompts customer for PIN
Customer enters PIN

Within 10 seconds, system verifies PIN

Within 1 second, system displays main menu of options

An Example of a Quality Scenario

The above scenario is concise, discrete, appropriate, single-threaded and at the right
level of detail. Of all the attributes for a single scenario defined in this chapter, this scenario
is missing the attributes ‘traced’ and ‘validated’. The scenario below includes these

attributes and is an example of a quality scenario for software requirements elicitation.

102

EXAMPLE: A quality scenario

Background information:
Creator: Kim Braun

Participating stakeholders: Alyssa Holt, Diana Spencer
Date Presented: Sept 10, 1997

Change History: Aug 12 1997: Alyssa wanted to tighten time
to gain access to prompt for PIN from 10 seconds to 5
seconds

Relationship with other scenarios: must be performed before
any scenario dealing with withdrawals, deposits or checking
balances

Rationale for scenario: show how customer gains access to
system

Criticality: HIGH
Scenario Requirement: Requirement 1.2

Other issues: Diana might like to see time constraint to
verify PIN dropped to 5 seconds

Name: Successful access to main menu

Initial conditions: System is in ready mode and displaying
welcome menu

Customer enters ATM card

Within 5 seconds, system prompts customer for PIN
Customer enters PIN

Within 10 seconds, system verifies PIN

Within 1 second, system displays main menu of options

VALIDATED: PASS — by Debbie Smith September 29,
1997

103

Twenty-one attributes for a quality scenario/scenario set have been defined and
discussed. They are inspired from previous work done on scenarios, work done in the area of
quality in an SRS and from original ideas. The next chapter will validate and demonstrate

necessity of each attribute.

CHAPTER 4

VALIDATION AND CONCLUSION

Chapter 4 defined 21 attributes of a quality scenario / scenario set. Each attribute has
been given a justification for inclusion stating why the attribute is needed. This chapter will
go one step further and validate that each attribute is necessary for a scenario / scenario set.
This will be accomplished by showing how the software lifecycle will be adversely affected
if an attribute is not present in a scenario / scenario set. The software lifecycle in question is
the waterfall lifecycle as shown in Figure 24 (adapted from Royce 1970). In addition, the
functions of Management and Configuration Management (CM) will be included to show

how they, too, may be affected by missing attributes.

Figure 24 Adapted Software Waterfall Lifecycle

[Requirements] =
o=,
l% Code

% Test & Pre-
operations ‘:@

Operations &

Maintenance

105

Table 5 shows the lifecycle phases along with management and CM as column
headings and the scenario attributes as row headings. There are many X’s in the table at
column and row intersections. Each X annotates the part of the software lifecycle
represented by the column it is in that will be affected if the attribute represented in that row
is not present. Each row has at least one X showing that each attribute affects at least one
phase of the lifecycle (including management and CM), demonstrating that each attribute is
in fact necessary. The following sections of this chapter will explain how each part of the

lifecycle is affected by missing attributes.

901

S Pye
siqes

sjeud
oxddy

oo

olle

s1qe
ASTYOY

s[qepuels
»pun

[resop
Jo [oAs]

W8

paopowr
«Edh.wﬂoo
Sunur],

Aous
JSISUOD 198
OLIBUSOS

PP
P<

Aoud
1SISU0D
s viEL

s[urg

PP [P R
olle

apIOsIq

X
X

EN Gl (Ve

18
OLIRUSIS
ajerdwion

X
X

< | P

lle

lle

OWIBUR0S
ae1dwo)d

S[npayos
/1500
Jemoe
pue
9JRWNSY
usIMIaq
yoyewr
-SIN

$9580 1591
Trey/ssed

Appsuoou]

SAL

I[24£9)1'T dAeMIjOS U

R

159100

moy
rmouy
1uo(

3

§9sed asn
10J jopowr
»afqo
suosqodef
asnjued)

ugisap
ayea
0] 3jno
“a

2po)
pue
usiseq
pegd

SYS pEq
03 3ur
INQIU0d
swiyqid
YO

pesro}

Jnolgip sds
SIS

sas
a1epduroou]

0 1oeduy Sunnsay - SUISSIA INQLI)IY IS OLIBUIS / OLIBUIIS JT S dqEL

LOL

(panunuo)) ¢ S[qeL

X

papeay
s[durg

wIsAs
pue Josn
u2M15q
soupunog

lle

eIpow
A

< PP

soInjiey
uro)sAs
aenuIIg

FERCE)
jeuon.
-dooxg
pue
Jeurtou
1PPON

PaTEPIEA

lielle

SUOEJIPUOD
fenug

paoeI],

X
X

paureN

no
Ispun
oure
-usos
md

3ue)

s[npayos
/1800
[emoe
pue
S1BWINSD
[EEVNEN]
yorewr
-SIN

e

spaau
JELY
1.USa0p
reyy
wS)SAS
XL

189 vO

MES&

1RO

59580

159}
318010
01 Jnd
-URA

$9580 159)
frey/ssed
Appoasuioou]

1591 01

moy
mouy
1uo(t

$as80 9sn
10J [opowt
walqo
suosqooef

asnjue)

aun,

150D

udisop
aeslo
o1 yno

“Ja

S¥s peq
013w
INGLIUOo
swiyqad
RUo

pearo}
HOOWIIp
SUS

S4S
1931100U]

SUS
a1o1dwoou]

108

Requirements

During the requirements phase requirements are elicited from stakeholders and are
specified in a document such as the Software Requirements Specification (SRS). Quality
attributes missing form a scenario or scenario set can adversely affect the requirements phase
by causing the SRS to be incomplete, incorrect or difficult to read. There are also other
problems missing attributes can cause with respect to requirements and they will be

discussed in this section as well.

Incomplete SRS

A complete SRS is one that ‘exhausts all known needs and objectives’ (Farbey 1990).
An incomplete SRS can result if any of the following attributes are not included in a scenario
or scenario set: complete (single and set), timing constraints captured, model both normal
and exceptional cases, simulate system failures and recovery as possible, and use multiple

forms of media as needed.
Complete scenario and complete scenario set not present. A scenario that is not
complete leaves gaps such as “what is the input?” “who or what is providing the input?”

“what is the output?” or “what is the system doing?”. A scenario set that is not complete also

leaves gaps and does not cover all actors’ interactions with the system. These holes or gaps

109

in a scenario or scenario set cause the SRS to be incomplete as they represent needs and
objectives not being covered.

Timing constraints not included. When timing constraints are not covered in a
scenario they are not likely to be incorporated into the SRS. This leaves the SRS incomplete
since the needed timing constraints are not included.

Normal and exceptional cases not modeled; System failure and recovery not
modeled. A set of scenarios that does not model exceptional cases or does not simulate
system failure and recovery in its collection is less likely to produce an SRS with these cases
described. This leaves the SRS incomplete because the need to handle exceptional cases and
system failure and recovery is not captured.

Multiple forms of media not used as needed. Many software systems appeal to
more than one of the five senses meaning multiple forms of media (such as written and
sound) are needed to capture the requirements of the system completely. If a scenario does
not use multiple forms of media as needed to represent how the future system will operate,
then there is an ‘unknown’ factor as far as how the future system will work when it comes to
the other forms of media not used in the scenario. This means the SRS, normally in written
form, will not reference another medium to flush out the requirement(s). This leaves the SRS

incomplete since the need for sound, movement, tactual, smell, etc. is not captured fully.

110

Incorrect SRS

In a correct SRS, ‘every requirement represents something required of the system to
be built’ (A. Davis and Overmyer et al. 1993). An incorrect SRS can result if any of the
following quality attributes are missing from a scenario or scenario set: complete (single and
set), consistency (single and set), understandable, and boundaries between system and user
shown clearly.

Complete scenario and complete scenario set not present. Incomplete scenarios
and scenario sets leave gaps or holes. SRS writers may unknowingly fill in these gaps
incorrectly when writing their document, otherwise the gaps may remain, leaving the
document incomplete as explained on page 108. These incorrectly filled in gaps create
incorrect requirements leaving the SRS itself incorrect.

Consistent scenario and consistent scenario set not present. An inconsistent
scenario or scenario set contains contradictions. The SRS writers may incorrectly choose one
of the inconsistencies to put in the SRS, leaving the SRS itself incorrect.

Not understandable. If a scenario is not understandable by the SRS writers then the
scenario can be incorrectly interpreted by the writers, resulting in a requirement that is
wrong. This causes the SRS to be incorrect.

Boundaries between user and system not present. If the boundaries between the
user and the system are not clearly shown in a scenario then SRS writers may make incorrect
assumptions regarding responsibilities. These incorrect assumptions lead to incorrect
requirements resulting in an incorrect SRS.

Initial conditions not described. A scenario with no initial conditions described, yet

represents a situation needing initial conditions, is likely to yield a requirement or

111

requirements without any conditions. This incorrectly means the requirements should hold
true under all conditions, yielding an incorrect SRS.
All of the above missing requirements contribute to an incorrect SRS. They yield

requirements that do not represent something required of the future system to be built.

SRS Difficult to Read

‘Readable’ is a desired attribute of an SRS according to Farbey (1990). An SRS that
is difficult to read may result if any of the following attributes are not included in a scenario:
concise, appropriate, understandable and single threaded.

Not concise. A scenario that is not concise makes for a difficult time writing the SRS
since there is a lot of noise and unneeded information contained in the scenario that needs to
be sifted through. This can result in an SRS that is cumbersome and difficult to read because
a lot of noise from the non-concise scenario may remain in the SRS.

Not appropriate. A scenario that is not appropriate contains information not
germane to the future system. In turn, the SRS may contain information that is not
appropriate, clouding the true requirements in the SRS. Due to the information overload with
information not pertinent to the future system, the SRS becomes difficult to read.

Not Understandable. A scenario that is not understandable by the requirements
writers can cause difficulties when trying to write the SRS. The SRS, or at least a portion,
may be difficult to read because the scenario it originated from was hard to understand.

Not single-threaded. A scenario that is not single threaded is itself confusing and
difficult to read because of all the conditional statements and branches. This can cause the

SRS to be confusing, cumbersome and hard to read.

112

Other Problems Contributing to a Bad SRS

Other properties that cause an SRS to not be of quality include: an inconsistent SRS,
an ambiguous SRS, an unachievable SRS and a non-traced SRS. In addition, when it is
difficult to discern individual requirements from a scenario it can be hard to write an SRS.
These problems can be caused when a scenario or scenario set does not contain the attributes:
consistent (single and set), right level of detail, achievable, named, traced and discrete.

Consistent scenario and consistent scenario set not present. An internally
consistent SRS is one such that ‘no subset of individual requirements stated therein conflict’
(A. Davis and Overmyer et al. 1993). A scenario or scenario set that is inconsistent can
cause SRS writers to write an SRS that is inconsistent, meaning individual requirements
conflict. Otherwise, if one of the inconsistencies is chosen to be included in the SRS at the
exclusion of the other(s), then an incorrect SRS may result as described on page 110.

Not at right level of detail. By the time the SRS is written, the requirements team is
at the bottom of the requirements funnel (page 40). A scenario should be more detailed than
abstract. Scenarios that are too abstract leave many ambiguities and unanswered questions
and lead to an SRS that is ambiguous.

Not achievable. An achievable SRS is one such that ‘there could exist at least one
system design and implementation that correctly implements all requirements stated in the
SRS’ (A; Davis and Overmyer et al. 1993). If a scenario is not achievable then the SRS
written from that scenario will contain at least one requirement, and consequently an SRS,
which is not achievable.

Not named or traced. A traced SRS is one such that ‘the origin of each requirement

is clear’ (A. Davis and Overmyer et al. 1993). Therefore, it is important for each requirement

113

in the SRS to state which scenarios it originated from. If a scenario is not named then it is
not possible for a requirement to reference its’ scenario origin. In addition, if a scenario is
not traced, meaning the history and origin behind the scenario is not included, then a
requirement in the SRS cannot trace all the way back to its beginnings (such as why the
scenario was created, who created it, etc.). The result could be that changes in the SRS will
have unknown operational impact.

Not discrete. A scenario that is not discrete accomplishes multiple goals and can be
difficult to decipher which sequence of actions or steps in a scenario can stand by

themselves. This causes difficulties in deciphering individual requirements for the SRS.

Design and Code

The next phase of the software lifecycle is design. The design phase is usually further
broken into two phases: preliminary design and detailed design. During design,
requirements in the SRS are translated into high-level preliminary software design and then
to low level detailed design. After design, the next phase is the coding phase where the
detailed design is translated to compilable code. For the purpose of looking at the effect of
missing scenario / scenario set attributes on the lifecycle, the design and code phases will be
looked at together.

Missing scenario or scenario set attributes can adversely affect design and code.
Missing attributes can cause: bad design and code, a design without timing constraints,
difficulty in creating a design, wasted cost and time, and inability to use Jacobson’s object

use cases in design. As Figure 25 shows, many of the problems in design and code from

114

missing scenario / scenario set attributes stem from problems the missing attributes caused in

the SRS.

Figure 25 Design and Code Problems Caused by Problems in the SRS Resulting From
Missing Scenario / Scenario set Attributes

Missing Scenario
Attributes

Problems
in the SRS

Bad Design
and Code

—]

Design

doesn’t

contain

timing
constraints

N

\

Difficulty in
creating
design

Wasted time
and money

Bad Design and Code

Bad design and code can be caused if any of the following scenario / scenario set
attributes are missing: complete (single and set), discrete, consistency (single and set),

timing constraints modeled, right level of detail, initial conditions described, normal and

exceptional cases modeled, system failure and recovery simulated as needed, and boundaries

between use and system shown clearly.
If missing, the above attributes yield problems with the SRS (the driving force of

design) as described starting on page 108. A bad SRS will cause problems in design and,

consequently, in code.

115

Scenarios / scenario sets that are not: complete, consistent, at right level of
detail, containing initial conditions, containing exceptional cases or system failures,
using multiple forms of media, or clearly showing boundaries between user and system
lead to incorrect design and code. If the above attributes are not present they lead to
problems with the SRS. Many of these missing attributes leave gaps in scenarios or scenario
sets that can be incorrectly filled in when the SRS is written. This causes the SRS to be
incorrect and, subsequently, leads to an incorrect design. On the other hand, the gaps may
remain in the SRS and be incorrectly filled in by the designers, or left as gaps in the design
leading to an incorrect or incomplete design.

A scenario that is not discrete can yield a design that is not discrete. A scenario
that is not discrete makes it difficult to discern individual requirements when writing the
SRS. This can yield a design that is not discrete, meaning, in order to accomplish a goal,
several non-necessary steps may be designed and coded into the system incorrectly.

A scenario without timing constraints modeled yields an SRS without timing
constraints for the requirements that scenario represents. This leads to a designed and

coded system with arbitrary (if any) timing constraints.

Difficult to Create a Design

Scenarios that are not concise, not understandable, not single-threaded or not
appropriate cause the SRS to be difficult to read. An SRS that is difficult to read means it
is hard to tell exactly what the SRS is conveying and will make for design and code that is
difficult to create since much time will be spent on trying to decipher the SRS. This leaves

room for interpretation with respect to what the design should accomplish.

116

Money and Time Wasted

A non-achievable SRS can increase the cost and time needed for design and
code. A scenario that is not achievable creates an SRS that is not achievable. Wasted time,
money and effort will go into trying to create a design and then in trying to code some aspect
of the proposed system that cannot be achieved. Money will be wasted on trying to design

something that cannot be created for scope or technology reasons.

Jacobson’s Object Use Cases cannot be used

A scenario that is not usable after the SRS is written does not allow for use in
design. As explained on page 12, Ivar Jacobson uses use cases for object oriented design via
object use cases. A scenario that is not usable after the SRS is written does not only cause
problems for testing, but gets in the way of using Jacobson’s method for converting use cases

used in requirements to those used in object oriented design.

Test

Following the coding phase is the test phase. Testing can be broken into: unit
testing, integration testing and system testing. For the purpose of looking at the effects of
missing scenario / scenario set attributes on testing, this paper will focus on system testing.
System testing is where the coded, compiled and finished system is tested to see if it meets
the requirements as stated in the SRS. Missing scenario / scenario set attributes can cause

problems in the test phase such as: not knowing how to test a scenario, incorrectly passing/

117

failing test cases, difficulties in creating test cases and other problems in testing. As with the
design and code phases, many of the problems in the testing phase resulting from missing
scenario / scenario set attributes stem from the problems the missing attributes caused in the

SRS. Figure 26 shows some of these problems stemming from a bad SRS.

Figure 26 Testing Problems Caused by Problems in the SRS Resulting from Missing
Scenario / Scenario Set Attributes

Missing Scenario
Attributes

i

Problems
in the SRS

Difficulties A/ i \

. . Don’t know
in creating Incorrectly how to test
test cases pass / fail

test cases

Don’t Know How to Test a Scenario

Scenarios or scenario sets that are not consistent, not usable after the SRS is
written or without boundaries between the system and user clearly shown cause
problems in knowing how to test the system. Scenarios or scenario sets that are
inconsistent lead to an SRS, design, and code that are inconsistent. Testing an inconsistent
system presents problems. Different sections of an inconsistent SRS may require the system,
under identical circumstances, to behave differently. How can one test that a system

simultaneously behaves differently or contradictory? A system that is not testable (usable

118

after the SRS is written) means there is no way to test that the validated scenario is satisfied
by the finished system or, ultimately, that the system meets the stakeholders’ needs. A
scenario that does not clearly show the boundaries between the user and system is likely to
produce an SRS without clearly defined boundaries between the user and the system. When

it comes to testing, it will be hard to know how to test an unclear boundary.

Incorrectly Pass / Fail Test Cases

Scenarios or scenario sets that are not complete, not detailed enough or without initial
conditions described can cause test cases to be incorrectly passed or failed. This means test
cases may be passed or failed based on a poor scenario / scenario set or SRS that does not
properly reflect stakeholders’ needs. The main reason for this problem is that these missing
attributes leave room for interpretation by the testers.

Scenarios or scenario sets that are incomplete have holes or gaps that lead to an
incomplete SRS, design, and coded system causing problems in testing. When these
holes are discovered during testing there is room for interpretation on what should happen.
For instance, page 50 shows an example of an incomplete scenario set. While it appears to
be a blatant error, assume the SRS does not capture what happens when the user wants to
check his/her balance (although it is an option on the menu). During testing, a tester selects
‘check balance’. How do testers know if what happens next is correct and therefore should
pass the test, or is wrong and should fail the test? The tester may make incorrect assumptions
and incorrectly pass or fail the test case.

Scenarios that are not detailed enough are vague and ambiguous leading to

assumptions during testing. They leave room for interpretation with respect to exactly

119

what the finished system should do. This means the tests may be incorrectly passed or failed
depending on the testers’ interpretation of the scenario and how the test case was written.

If initial conditions are not described in a scenario then testers will not know if
any special circumstances must be in place for the scenario to succeed. This means test

cases may be erroneously passed or failed because the initial conditions are not in place.

Difficulties in Creating Test Cases

Scenarios that are not concise, appropriate or single-threaded cause difficulties
when trying to create test cases. They lead to an SRS that is difficult to read. An SRS that
is difficult to follow will make it difficult to create test cases from the SRS. In addition,
these three missing attributes cause the scenarios themselves to be confusing, making it

difficult to discern test cases straight from the scenarios.

Other Problems in Testing

Long test cases, testing for non-appropriate system aspects and waiting arbitrarily
long for test results are some of the other problems missing scenario attributes can cause with
respect to testing. This section will discuss these other problems.

A scenario that is not discrete, not appropriate or does not have timing
constraints causes testing problems with regards to length. A scenario that is not discrete
is long and creates long test cases. A scenario that is not appropriate contains information not
germane to the future system meaning test cases created from the scenario or resulting SRS

will test for non-appropriate aspects of the environment / system. This can lengthen the time

120

it takes to test. A scenario without timing constraints leads to a system with arbitrary or no
timing constraints. When testing, this means the tester may have to wait an arbitrarily long
time to see results from their test cases.

A scenario or scenario set that is not achievable, does not model exceptional
cases or simulate system failures creates problems in testing. A scenario that is not
achievable leads to a system that cannot be created. This means the test cases from this
unachievable scenario will fail because the system cannot be built to pass the test cases. A
scenario set that does not model exceptional cases or simulate system failures means the
resulting system will not handle these unique situations to any specification. With respect to
testing, test cases will not be created to check for the proper handling of these situations,
meaning a system that does not meet stakeholder needs regarding system failures and

recoveries or exceptional cases may pass testing.

Maintenance

After a system has passed testing it moves to the operations and maintenance phase
until the system is retired. During maintenance, the system is corrected to fix any problems
it was delivered with and adapted to meet changing needs. Between 60% - 80% of total
software dollars are spent on maintenance (Pigoski 1997) making it the most expensive phase
in the software lifecycle. Missing scenario or scenario set attributes can cause an incorrect
system (one that does not meet stakeholders’ needs) to be delivered. This requires the system
be corrected during operations and maintenance. As Figure 27 shows, missing scenario /

scenario set attributes cause problems in requirements, design and coding, and testing.

121

Ultimately, these problems cause the final system to be delivered with problems and in need

of correction during maintenance.

Figure 27 Source of Problems in Maintenance Stemmed from Missing Scenario /
Scenario Set Attributes

Missing Scenario /
Scenario set
Attributes

l

Problems in the SRS

'

Poorly Designed and
Coded System

Test Cases
Erroneously Passed /

Failed

Incorrect System
Delivered into
Operations and
Maintenance

122

Correcting the Delivered System

A scenario or scenario set that is not complete or not consistent can cause the
system to be incorrect when delivered. An incomplete scenario or scenario set can cause
the final system to be incomplete when delivered. This means the gaps or holes need to be
filled during maintenance. An inconsistent scenario or scenario set can cause the delivered
system to be incorrect and/or inconsistent and will require the system be fixed in
maintenance to meet users’ needs.

A scenario without timing constraints or without initial conditions described can
cause an incorrect system to be delivered with maintenance required. A scenario
without timing constraints yields a delivered system without regard to timing. This can
create unhappy users (among other problems) because of the poor timing of the system. For
example, a ‘welcome and instructions’ sequence of screens may flash by the user, or, it may
take too long for a user to get a response from the system. It can also cause problems for
other entities relying on this system for messages. A system needing a faster response time
may require additional hardware causing a major and expensive system redesign in
maintenance. A scenario without initial conditions described can yield an unconditional
system (or at least a system with some unconditional aspects). This means the system may
react in ways that the stakeholders do not desire. The result is the system will need to be
fixed in maintenance.

A scenario that is not detailed enough, does not clearly show boundaries between
the user and system, or is not understandable creates an incorrect system. A scenario

that is not detailed enough or does not clearly delineate the boundaries between the user and

123

the system can be vague with several different interpretations possible. This ambiguity can
cause testers to pass the system although the system does not truly meet stakeholders’ needs.
This will cause the system to be in need of repair in maintenance. When stakeholders do not
understand a scenario they may validate a scenario (page 79) that does not truly reflect how
they want the system to behave because they do not understand what the scenario is doing.
The system may be built and tested to meet the validated scenario even though the scenario is
wrong. During operations, it will come to light that the system does not meet stakeholders’
needs and will need to be corrected during maintenance.

A scenario that is not validated may not be valid or correct. This means the final
system developed from a non-validated scenario may not be correct in meeting stakeholders’
needs. Therefore, the system will need to be corrected in maintenance.

A scenario set that does not model exceptional cases or simulate system failure
and recovery mean situations in the final system may develop that have unknown
results. If these situations are not modeled or discussed during requirements and design then
one can only guess at what will happen when an exceptional case or system failure occurs.
These cases will surface once the system is operational (if not before) and the system may
need to be fixed if the system does not properly handle the situation.

When multiple forms of media are not used in a scenario that describes a
situation appealing to more than one of the five senses then an incomplete SRS and a
system that does not meet stakeholders’ expectations can be the result. For example, a
system may require a verbal message to be sounded at a certain point. Designers and
stakeholders may agree on the words that should be spoken via a written scenario. The

designers may implement a computerized voice when the other stakeholders wanted a

124

human, male voice. If a recording of the message were played at the time the scenario was
presented, this difference in ideas would have been caught. Instead, the system will need to

be corrected in maintenance.

Management

While management is not a phase in the software lifecycle, it is an important function
for all software projects. Among the management duties are planning for and controlling
resources. For each project, management needs to know how many people, how much time,
and how much money to put on the project. They must estimate how many of these
resources will be required for the project to ensure the project will be successful, yet will not
waste resources. Some missing scenario attributes can cause a mismatch between
management estimates and the actual use of resources such as cost and schedule. As Figure
28 illustrates, this mismatch can stem from the correction of the system required in
maintenance, difficulties in discerning requirements, and an unachievable system that may be

caused by missing scenario / scenario set attributes.

Figure 28 Possible Causes for Mismatches in Estimated and Actual Cost / Schedule

Missing Scenario
/ Scenario Set
Attributes

Difficulty in
Discerning
Requirements

Correction
Required in
Maintenance

Unachievable
System

125

Mismatch
between
estimated and
actual cost /
schedule

Mismatch Between Estimated and Actual Cost / Schedule

The previous section on problems in maintenance (beginning on page 120) discussed
how if any one of nearly 15 scenario / scenario set attributes were missing they would cause
the final system to be in need of correction in maintenance. The cost of putting these
attributes in the scenario, ensuring that the requirements, design and code were correct would
be less expensive than to fix the problems in maintenance (Boehm 1981). Management does
not necessarily plan for scenarios to be incomplete, inconsistent, etc. and will not allocate

funds in maintenance to correct such problems. Therefore, when the system is in need of

126

correction in maintenance due to missing attributes, there is a mismatch between
management’s estimated cost and the actual cost. There are additional missing attributes that
may lead to a mismatch between estimated and actual cost / schedule. They are: concise,
discrete, achievable, appropriate, and single threaded.

Scenarios that are not concise, discrete, appropriate or single-threaded create a
difficult time in discerning requirements. It takes people longer to try and sift through the
noise, non-appropriate information and difficult to follow writing of scenarios that do not
have these attributes. These missing attributes may result in an SRS that is difficult to
follow, cumbersome and, consequently, require a longer time to create a design from such an
SRS. Management may not have estimated the extra time needed by their people to sort
through and analyze such material meaning the estimated time will be less than the actual
time taken to write an SRS, design, etc. This results in a slip in the planned / estimated
schedule.

A scenario that is not achievable results in an SRS, design and system that is not
achievable. If it is discovered before developers try and design the system that it is
unachievable then management’s corresponding estimates will not be valid and the project
will either be scrapped or re-evaluated with new estimates created. However, if it is not
caught prior to design that the system is unachievable then an infinite amount of time and
money will be spent on trying to design and create a system that cannot be created (until
someone ‘pulls the plug’ on the project). Since management did not know the system was
unachievable (otherwise the project would not have gone forward), their estimates will be

less than the actual time and cost needed.

127

Configuration Management (CM)

While not a phase in the software lifecycle, CM is yet another important function for
software projects. CM controls the current version of code and accompanying documents
(also called the baseline). CM allows people to know exactly what comprises the current
operational baseline, test baseline, etc. It allows people to know the contents of previous
versions of the system, what changes were made, and so on. This is helpful in trying to pin
down in what version bugs in the software appeared. CM also strictly controls who can
change the material under its control, recording names and dates. Not only should code be
under CM control, but also documentation, requirements and scenarios. It is important to
have scenarios under CM control so that changes made to scenarios are controlled and

documented, and previous versions can be referenced.

Inability to put Scenarios under CM Control

If a scenario is not named then there is no way to reference it, meaning the
scenario cannot be put under CM control. An arbitrary numbering scheme could be
created, but without a name for a scenario there is not way to match the number of the

scenario to the actual scenario.

128

Conclusion

Scenarios are very useful in requirements elicitation by prompting the discussion and
sharing of ideas among stakeholders. Scenarios can record these ideas in a variety of formats
as discussed in chapter 2. This paper looked specifically at written, natural language
scenarios. A quality scenario / scenario set sets the stage for the best SRS, design, code,
testing and delivered system possible. This paper defined a quality scenario / scenario set as
being one that contains the 21 attributes described in chapter 3. Missing attributes cause
problems in the software lifecycle and other software functions as shown in the first part of
this chapter.

In this thesis I contributed new information to the body of knowledge on scenarios for
requirements elicitation. I expanded on scenario attributes previously referenced by other
authors. I also looked to SRS attributes and adapted and expanded the appropriate attributes
and adopted them for scenario attributes. Lastly, I created brand new attributes not
previously referenced before in the realm of a scenario or SRS. In total, I defined 21
attributes of a quality scenario / scenario set. Previously, no more than 5 scenario attributes
have been mentioned at one time (Nardi 1995). Besides defining each attribute and
justifying its inclusion, I provided examples of what a scenario or scenario set would be like
if the attribute was not present and examples of what the scenario or scenario set wold be like

if the attribute was present.

129

In addition to defining more attributes in a paper than have been stated before at one
time, I have demonstrated in this chapter that each attribute is necessary. I showed necessity
by explaining how if any one of the attributes I defined was missing, the software lifecycle or
other software functions would be adversely affected.

Since it is least expensive to fix problems in the requirements phase than in the
remaining lifecycle phases (Boehm 1981), it is important to flush out and refine as many
correct requirements as possible. Quality scenarios and scenario sets used in requirements

elicitation build a good foundation for a robust SRS and successful software project.

REFERENCE LIST

Anderson, John, and Brian Durney. 1992. Using Scenarios in Deficiency-driven
Requirements Engineering. In IEEE International Symposium on Requirements

Engineering. Los Alamitos, California: IEEE Computer Society Press.

Andriole, Stephen. 1989. Storyboard Prototyping. Wellesley, Massachusetts: QED

Information Systems, Inc.

Backus, J. 1959. The Syntax and Semantics of the Proposed International Algebraic
Language of Zurich ACM-GAMM Conference. In Proceedings International

Conference on Information Processing. Paris: UNESCO.

Boehm, B. 1981. Software Engineering Economics. Englewood Cliffs, NJ: Prentice Hall,

Inc.

Campbell, Robert. 1992. Will the Real Scenario Please Stand Up?. SIGCHI Bulletin 24

(April):6-8.

131

Carroll, John. 1995. The Scenario Perspective on System Development. Chl Scenario-
Based Design Envisioning Work and Technology in System Development, edited by

John Carroll. New York: John Wiley & Sons, Inc.

Chin, George Jr., Mary Rosson, and John Carroll. 1997. Participatory Analysis: Shared

Development of Requirements from Scenarios. In CHI 97. Atlanta: ACM.

Dasarathy, B. 1985. Timing Constraints of Real-Time Systems: Constructs for Expressing
them, Methods of Validating them. IEEE Transactions of Software Engineering SE-

11(January):80-86.

Davis, Alan. 1990. System Testing: Implications of Requirements Specifications.

Information and Software Technology 32(6):407-414.

Davis, Alan, and Tomlison Rauscher. 1979. Formal Techniques and Automatic Processing
to Ensure Correctness in Requirements Specifications. Paper presented at IEEE

Specifications of Reliable Software Conference.

Davis, Alan, Scott Overmyer, Kathleen Jordan, Joseph Caruso, Fatma Dandashi, Anhtuan
Dinh, Gary Kincaid, Glen Ledeboer, Patricia Reynolds, Pradip Sitaram, Anh Ta, and
Mary Theofanos. 1993. Identifying and Measuring Quality in a Software
Requirements Specification. In JEEE First International Sofiware Meirics

Symposium. Los Alamitos, California: IEEE Computer Society Press.

132

DeMarco, Tom. 1996. Keynote Address at 2" IEEE International Conference on

Requirements Engineering. Colorado Springs, Colorado. March 1996.

Erickson, Thomas. 1995. Notes on Design Practice: Stories and Prototypes as Catalysts for
Communication. Ch2 Scenario-Based Design Envisioning Work and Technology in

System Development, edited by John Carroll. New York: John Wiley & Sons, Inc.

Farbey, J. 1990. Software Quality Metrics: Considerations about Requirements and

Requirements Specifications. Information and Software Technology 32(1):60-64.

Goguen, Joseph. 1993. Social Issues in Requirements Engineering. In IEEE International
Symposium on Requirements Engineering. Los Alamitos, California: IEEE

Computer Society Press.

Holbrook, Hilliard. 1990. A Scenario-Based Methodology for Conducting Requirements

Elicitation. ACM Sigsoft Software Engineering Notes 15 (January):95-104.

Hooper, James, and Pei Hsia. 1982. Scenario-Based Prototyping for Requirements

Engineering. ACM Sigsoft Software Engineering Notes 7 (December):88-91.

Hsia, Pei, Jayarajan Samuel, Jerry Gao, David Kung, Yasufumi Toyoshima, and Cris Chen.

1994. Formal Approach to Scenario Analysis. JEEE Software 11 (March):33-41.

133

Jacobson, Ivar. 1995. The Use-Case Construct in Object-Oriented Software Engineering.
Ch 12 Scenario-Based Design Envisioning Work and Technology in System

Development, edited by John Carroll. New York: John Wiley & Sons, Inc.

Karat, John. 1995. Scenario Use in the Design of a Speech Recognition System. Ch 5
Scenario-Based Design Envisioning Work and Technology in System Development,

edited by John Carroll. New York: John Wiley & Sons, Inc.

Keller, Steven, Laurence Kahn, and Roger Panara. 1990. Specifying Quality Requirements
with Metrics. In IEEE Computer Society Press Tutorial. Los Alamitos, California:

IEEE Computer Society Press.

Kramer, Jeff, and NG Keng. 1988. Animation of Requirements Specifications. Software —

Practice and Experience 18(August):112-137.

Kyng, Morten. 1992. Scenario? Guilty!. SIGCHI Bulletin 24 (October):8-9.

Kyng, Morten. 1995. Creating Contexts for Design. Ch 4 Scenario-Based Design
Envisioning Work and Technology in System Development, edited by John Carroll.

New York: John Wiley & Sons, Inc.

134

Leite, Julio, Gustavo Rossi, Federico Balaguer, Vanesa Majorana, Gladys Kaplan, Graciela
Hadad, and Alejandro Oliveros. 1997. Enhancing a Requirements Baseline with
Scenarios. In IEEE International Symposium on Requirements Engineering. Los

Alamitos, California: IEEE Computer Society Press.

Macaulay, Linda. 1992. Requirements Capture as a Cooperative Activity. In JEEE
International Symposium on Requirements Engineering. Los Alamitos, California:

IEEE Computer Society Press.

Muller, Michael, Leslie Tudor, Daniel Wildman, Ellen White, Robert Root, Tom Dayton,
Rebecca Carr, Barbara Diekmann, and Elizabeth Dykstra-Erickson. 1995. Bifocal
Tools for Scenarios and Representations in Participatory Activities with Users. Ch 6

Scenario-Based Design Envisioning Work and Technology in System Development,

edited by John Carroll. New York: John Wiley & Sons, Inc.

Nardi, Bonnie. 1995. Some Reflections on Scenarios. Ch 15 Scenario-Based Design
Envisioning Work and Technology in System Development, edited by John Carroll.

New York: John Wiley & Sons, Inc.

Nielsen, Jakob. 1995. Scenarios in Discount Usability Engineering. Ch 3 Scenario-Based
Design Envisioning Work and Technology in System Development, edited by John

Carroll. New York: John Wiley & Sons, Inc.

135

Pigoski, Thomas. 1997. Practical Software Maintenance. New York: John Wiley & Sons,

Inc.

Potts, Colin, Kenji Takahashi, and Annie Anton. 1994. Inquiry-Based Requirements

Analysis. IEEE Software 11 (March):21-32.

Roman, Gruia-Catalin. 1985. A Taxonomy of Current Issues in Requirements Engineering.

IEEE Computer. 18(April):14-21.

Rosson, Mary, and John Carroll. 1995. Narrowing the Specification-Implementation Gap in
Scenario-Based Design. Ch 10 Scenario-Based Design Envisioning Work and
Technology in System Development, edited by John Carroll. New York: John Wiley

& Sons, Inc.

Royce, W. 1970. Managing the Development of Large Software Systems: Concepts and
Techniques. In Proceedings of WESCON. Referenced in Alan Davis, System
Testing: Implications of Requirements Specifications. Information and Software

Technology 32(6):407-414.

Rumbaugh, James. 1994. Getting Started — Using Use Cases to Capture Requirements.

Journal of Object-Oriented Programming (September):8-12,23.

136

Sutcliffe, Alistair. 1997. A Technique Combination Approach to Requirements
Engineering. In IEEE International Symposium on Requirements Engineering. Los

Alamitos, California: Computer Society Press.

UCCS Center for Software Systems Engineering. 1997. Formalization of Scenarios.

University of Colorado, Colorado Springs.

Wexelblat, Alan. 1987. Report on Scenario Technology. MCC Technical Report STP-139-

87. Austin, Texas: Microelectronics and Computer Tecnology Corporation.

Wright, Peter. 1992. What’s in a Scenario? SIGCHI Bulletin 24 (October):11-12.

Young, Richard, and Philip Barnard. 1992. Multiple Uses of Scenarios: a Reply to

Campbell. SIGCHI Bulletin 24 (October):10.

Zahniser, Richard. 1993. Storyboarding Techniques. American Programmer.

(September):9-14.

